scholarly journals The MODY1 Gene for Hepatocyte Nuclear Factor 4α and a Feedback Loop Control COUP-TFII Expression in Pancreatic Beta Cells

2008 ◽  
Vol 28 (14) ◽  
pp. 4588-4597 ◽  
Author(s):  
Anaïs Perilhou ◽  
Cécile Tourrel-Cuzin ◽  
Pili Zhang ◽  
Ilham Kharroubi ◽  
Haiyan Wang ◽  
...  

ABSTRACT Pancreatic islet beta cell differentiation and function are dependent upon a group of transcription factors that maintain the expression of key genes and suppress others. Knockout mice with the heterozygous deletion of the gene for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) or the complete disruption of the gene for hepatocyte nuclear factor 4α (HNF4α) in pancreatic beta cells have similar insulin secretion defects, leading us to hypothesize that there is transcriptional cross talk between these two nuclear receptors. Here, we demonstrate specific HNF4α activation of a reporter plasmid containing the COUP-TFII gene promoter region in transfected pancreatic beta cells. The stable association of the endogenous HNF4α with a region of the COUP-TFII gene promoter that contains a direct repeat 1 (DR-1) binding site was revealed by chromatin immunoprecipitation. Mutation experiments showed that this DR-1 site is essential for HNF4α transactivation of COUP-TFII. The dominant negative suppression of HNF4α function decreased endogenous COUP-TFII expression, and the specific inactivation of COUP-TFII by small interfering RNA caused HNF4α mRNA levels in 832/13 INS-1 cells to decrease. This positive regulation of HNF4α by COUP-TFII was confirmed by the adenovirus-mediated overexpression of human COUP-TFII (hCOUP-TFII), which increased HNF4α mRNA levels in 832/13 INS-1 cells and in mouse pancreatic islets. Finally, hCOUP-TFII overexpression showed that there is direct COUP-TFII autorepression, as COUP-TFII occupies the proximal DR-1 binding site of its own gene in vivo. Therefore, COUP-TFII may contribute to the control of insulin secretion through the complex HNF4α/maturity-onset diabetes of the young 1 (MODY1) transcription factor network operating in beta cells.

2018 ◽  
Vol 314 (1) ◽  
pp. G14-G21 ◽  
Author(s):  
Saminathan Muthusamy ◽  
Jong Jin Jeong ◽  
Ming Cheng ◽  
Jessica A. Bonzo ◽  
Anoop Kumar ◽  
...  

Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.


1998 ◽  
Vol 273 (17) ◽  
pp. 10168-10173 ◽  
Author(s):  
C. Arnold Spek ◽  
Vincent J. Lannoy ◽  
Frédéric P. Lemaigre ◽  
Guy G. Rousseau ◽  
Rogier M. Bertina ◽  
...  

Author(s):  
Xing-Wu Zheng ◽  
Rama Kudaravalli ◽  
Theresa T. Russell ◽  
Donna M. DiMichele ◽  
Constance Gibb ◽  
...  

2009 ◽  
Vol 43 (1) ◽  
pp. 19-27 ◽  
Author(s):  
David M Selva ◽  
Geoffrey L Hammond

Thyroid hormones increase hepatic sex hormone-binding globulin (SHBG) production, which is also regulated by hepatocyte nuclear factor-4α (HNF-4α) in response to changes in the metabolic state of the liver. Since the human SHBG promoter lacks a typical thyroid hormone response element, and because thyroid hormones influence metabolic state, we set out to determine whether thyroid hormones mediate SHBG expression indirectly via changes in HNF-4α levels in HepG2 human hepatoblastoma cells, and in the livers of transgenic mice that express a 4.3 kb human SHBG transgene under the control of its own 0.8 kb promoter sequence. Thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) increase SHBG accumulation in HepG2 cell culture medium over 5 days, and increase cellular SHBG mRNA levels. In addition, T4 treatment of HepG2 cells for 5 days increased HNF-4α mRNA and HNF-4α levels in concert with decreased cellular palmitate levels. Plasma SHBG levels were also increased in mice expressing a human SHBG transgene after 5 days treatment with T3 along with increased hepatic HNF-4α levels. In HepG2 cells, the human SHBG promoter failed to respond acutely (within 24 h) to T4 treatment, but a 4-day pre-treatment with T4 resulted in a robust response that was prevented by co-treatment with HNF-4α siRNA, or by blocking the β-oxidation of palmitate through co-treatment with the carnitine palmitoyltransferase I inhibitor, etomoxir. These data lead us to conclude that thyroid hormones increase SHBG production indirectly by increasing HNF-4α gene expression, and by reducing cellular palmitate levels that further contribute to increased HNF-4α levels in hepatocytes.


2002 ◽  
Vol 16 (1) ◽  
pp. 170-183 ◽  
Author(s):  
Benoit R. Gauthier ◽  
Valerie M. Schwitzgebel ◽  
Maia Zaiko ◽  
Aline Mamin ◽  
Beate Ritz-Laser ◽  
...  

Abstract Glucagon gene expression in the endocrine pancreas is controlled by three islet-specific elements (G3, G2, and G4) and theα -cell-specific element G1. Two proteins interacting with G1 have previously been identified as Pax6 and Cdx2/3. We identify here the third yet uncharacterized complex on G1 as hepatocyte nuclear factor 3 (HNF-3)β, a member of the HNF-3/forkhead transcription family, which plays an important role in the development of endoderm-related organs. HNF-3 has been previously demonstrated to interact with the G2 element and to be crucial for glucagon gene expression; we thus define a second binding site for this transcription on the glucagon gene promoter. We demonstrate that both HNF-3α and -β produced in heterologous cells can interact with similar affinities to either the G1 or G2 element. Pax6, which binds to an overlapping site on G1, exhibited a greater affinity as compared with HNF-3α or -β. We show that both HNF-3β and -α can transactivate glucagon gene transcription through the G2 and G1 elements. However, HNF-3 via its transactivating domains specifically impaired Pax6-mediated transactivation of the glucagon promoter but had no effect on transactivation by Cdx2/3. We suggest that HNF-3 may play a dual role on glucagon gene transcription by 1) inhibiting the transactivation potential of Pax6 on the G1 and G3 elements and 2) direct activation through G1 and G2.


2005 ◽  
Vol 281 (8) ◽  
pp. 5246-5257 ◽  
Author(s):  
Atsuko Miura ◽  
Kazuya Yamagata ◽  
Masafumi Kakei ◽  
Hiroyasu Hatakeyama ◽  
Noriko Takahashi ◽  
...  

2001 ◽  
Vol 15 (7) ◽  
pp. 1200-1210 ◽  
Author(s):  
Jérôme Eeckhoute ◽  
Pierre Formstecher ◽  
Bernard Laine

Abstract Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor involved in glucose homeostasis and is required for normal β-cell function. Mutations in the HNF4α gene are associated with maturity-onset diabetes of the young type 1. E276Q and R154X mutations were previously shown to impair intrinsic transcriptional activity (without exogenously supplied coactivators) of HNF4α. Given that transcriptional partners of HNF4α modulate its intrinsic transcriptional activity and play crucial roles in HNF4α function, we investigated the effects of these mutations on potentiation of HNF4α activity by p300, a key coactivator for HNF4α. We show here that loss of HNF4α function by both mutations is increased through impaired physical interaction and functional cooperation between HNF4α and p300. Impairment of p300-mediated potentiation of HNF4α transcriptional activity is of particular importance for the E276Q mutant since its intrinsic transcriptional activity is moderately affected. Together with previous results obtained with chicken ovalbumin upstream promoter-transcription factor II, our results highlight that impairment of recruitment of transcriptional partners represents an important mechanism leading to abnormal HNF4α function resulting from the MODY1 E276Q mutation. The impaired potentiations of HNF4α activity were observed on the promoter of HNF1α, a transcription factor involved in a transcriptional network and required for β-cell function. Given its involvement in a regulatory signaling cascade, loss of HNF4α function may cause reduced β-cell function secondary to defective HNF1α expression. Our results also shed light on a better structure-function relationship of HNF4α and on p300 sequences involved in the interaction with HNF4α.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 626 ◽  
Author(s):  
Jean-Philippe Babeu ◽  
Samuel D. Wilson ◽  
Élie Lambert ◽  
Dominique Lévesque ◽  
François-Michel Boisvert ◽  
...  

Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.


Sign in / Sign up

Export Citation Format

Share Document