scholarly journals Slx5 Promotes Transcriptional Silencing and Is Required for Robust Growth in the Absence of Sir2

2007 ◽  
Vol 28 (4) ◽  
pp. 1361-1372 ◽  
Author(s):  
Russell P. Darst ◽  
Sandra N. Garcia ◽  
Melissa R. Koch ◽  
Lorraine Pillus

ABSTRACT The broadly conserved Sir2 NAD+-dependent deacetylase is required for chromatin silencing. Here we report the discovery of physical and functional links between Sir2 and Slx5 (Hex3), a RING domain protein and subunit of the Slx5/8 complex column, which is a ubiquitin E3 ligase that targets sumoylated proteins. Slx5 interacted with Sir2 by two-hybrid and glutathione S-transferase-binding assays and was found to promote silencing of genes at telomeric or ribosomal DNA (rDNA) loci. However, deletion of SLX5 had no detectable effect on the distribution of silent chromatin components and only slightly altered the deacetylation of histone H4 lysine 16 at the telomere. In vivo assays indicated that Sir2-dependent silencing was functionally intact in the absence of Slx5. Although no previous reports suggest that Sir2 contributes to the fitness of yeast populations, we found that Sir2 was required for maximal growth in slx5Δ mutant cells. A similar requirement was observed for mutants of the SUMO isopeptidase Ulp2/Smt4. The contribution of Sir2 to optimal growth was not due to known Sir2 roles in mating-type determination or rDNA maintenance but was connected to a role of sumoylation in transcriptional silencing. These results indicate that Sir2 and Slx5 jointly contribute to transcriptional silencing and robust cellular growth.

2009 ◽  
Vol 29 (22) ◽  
pp. 6033-6045 ◽  
Author(s):  
Sandra Jacobson ◽  
Lorraine Pillus

ABSTRACT The cellular role of the Ada2 coactivator is currently understood in the context of the SAGA histone acetyltransferase (HAT) complex, where Ada2 increases the HAT activity of Gcn5 and interacts with transcriptional activators. Here we report a new function for Ada2 in promoting transcriptional silencing at telomeres and ribosomal DNA. This silencing function is the first characterized role for Ada2 distinct from its involvement with Gcn5. Ada2 binds telomeric chromatin and the silencing protein Sir2 in vivo. Loss of ADA2 causes the spreading of Sir2 and Sir3 into subtelomeric regions and decreased histone H4 K16 acetylation. This previously uncharacterized boundary activity of Ada2 is functionally similar to, but mechanistically distinct from, that of the MYST family HAT Sas2. Mounting evidence in the literature indicates that boundary activities create chromosomal domains important for regulating gene expression in response to environmental changes. Consistent with this, we show that upon nutritional changes, Ada2 occupancy increases at a subtelomeric region proximal to a SAGA-inducible gene and causes derepression of a silenced telomeric reporter gene. Thus, Ada2, likely in the context of SAGA, is positioned at chromosomal termini to participate in both transcriptional repression and activation in response to nutrient signaling.


1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2559-2559
Author(s):  
Juliana Vélez Luján ◽  
Niki Zacharias ◽  
Dinesh Rakheja ◽  
Tushar D Bhagat ◽  
Jaehyuk Lee ◽  
...  

Abstract Glutamine (Gln) was shown to play a role in generation of oncometabolite 2-hydroxyglutarate (2-HG) in tumors with high GLS (glutaminase) expression, whereby IDH2 (Isocitrate Dehydrogenase 2) enzyme catalyzes carboxylating reduction of glutamine-derived α-ketoglutarate (α-KG) to isocitrate and noncarboxylating reduction to 2-HG (Wise PNAS 2011). 2-HG in turn is known to inhibit α-KG dependent dioxygenases that mediate epigenetic events, including DNA and histone demethylation (Licht Cancer Cell 2010). A recent report demonstrated that hypoxia induces production of the L-enantiomer of 2-HG (L-2HG), through enzymatic reduction of α-KG by lactate dehydrogenase A (LDHA) (Intlekofer Cell Metabolism 2015). We have previously demonstrated that leukemic bone marrow microenvironment is highly hypoxic (Benito PLoS One 2011). Further, our unpublished data indicate upregulation of GLS protein and increase production of total 2-HG in AML (acute myeloid leukemia) cells cultured under hypoxia. We therefore propose a link between hypoxia, Gln metabolism, and epigenetic regulation in AML. Since increased methylation (and decreased hydroxymethylation) is seen in AML, we hypothesize that GLS inhibition can abrogate these changes via reduction of 2-HG levels. First, we examined effects of hypoxia and selective GLS inhibitor CB-839 (Calithera Biosciences) on cellular growth of AML cells with wild type IDH (OCI-AML3 and HL-60), cultured alone or co-cultured with bone marrow derived stromal cells (MSC). The culture of untreated OCI-AML3 alone in normoxic and hypoxic conditions caused a decrease in viability from 96 ± 2.5% to 84 ± 4.1% respectively, while the treatment with CB-839 (1 mM) for 6 days decreased viability in OCI-AML3 cells from 94 ± 0.23% to 71 ± 2.3% respectively (P=0.015). While MSC co-cultures improved survival of floating AML cells, the attached cells that were in direct contact with MSC were more affected under hypoxic conditions, having a viability of 64 ± 8.7% at the end of the experiment. These data indicate that GLS inhibitor is more effective under hypoxic conditions mimicking leukemic BM microenvironment. Hypoxia selectively induced the production of L-2HG (measured by liquid chromatography-tandem mass spectrometry) under hypoxic conditions (>40 fold) in OCI-AML3 cells, both with and without MSC co-culture. This increase in L-2HG was partially inhibited by co-treating OCI-AML3 cells with GLS inhibitor CB-839 (reduction of 1.7-fold in media only and 1.3-fold in MSC co-culture). Determination of hydroxymethylation (hmc) levels using HELP-GT assay demonstrated a significant increase in hmc in cells treated with CB-839. Of importance, genes that were differentially hydroxymethylated after CB-839 treatment belonged to important functional categories with cancer being the dominant pathway affected by these changes. Under hypoxia, glucose metabolism is known to be directed towards anaerobic glycolysis, with increased pyruvate-lactate enzymatic conversion by LDHA. To characterize the role of Gln and GLS on these processes within leukemia microenvironment, we performed nuclear magnetic resonance imaging with hyperpolarized pyruvate in NSG (NOD scid gamma) mice engrafted with GFP/luc-labeled OCI-AML3 cells. Inhibition of GLS in vivo following exposure of mice with 200 mg/kg dose of CB-839 showed a decrease in lactate conversion rate within leukemic bone marrow (femur area) (0.31 + 0.03 (pre) to 0.20 + 0.04 (post) P < 0.05), possibly due to the reduction of the level of NADH from decreased flux of Gln in the TCA cycle. In summary, our results indicate that Gln and GLS contribute towards hypoxia-induced production of L-2HG and critical epigenetic changes in AML; as well as playing a role in enhanced production of lactate from pyruvate. These findings suggest a major importance of Gln in metabolic and epigenetic reprogramming of microenvironment. Disclosures Off Label Use: CB-839 is a potent, selective, reversible and orally bioavailable glutaminase (mitochondrial enzyme able to convert glutamine in glutamate) inhibitor that has shown to reduce cell growth and/or induce cell death in solid tumors and hematological malignancies.. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding.


1992 ◽  
Vol 175 (3) ◽  
pp. 843-846 ◽  
Author(s):  
R Glas ◽  
K Sturmhöfel ◽  
G J Hämmerling ◽  
K Kärre ◽  
H G Ljunggren

It has frequently been suggested that loss of beta 2-microglobulin (beta 2m) in tumor cells may lead to malignant progression due to escape from immunological recognition. Here, we directly tested the role of beta 2m expression in tumorigenicity. A beta 2 m loss mutant (C4.4-25-), selected from the murine lymphoma EL-4, showed a marked reduction in tumorigenicity as compared with EL-4 in normal C57B1/6 (B6) mice. The reduced tumorigenicity was directly related to beta 2 m expression. Transfection of an intact murine beta 2m gene markedly increased the tumorigenic potential. The reduced tumorigenicity of C4.4-25- compared with beta 2m transfected cells was observed also in athymic B6 nu/nu mice, but was abolished in B6 mice depleted of natural killer (NK) 1.1-positive cells. These results show that restoration of beta 2m expression can promote tumorigenicity and demonstrate for the first time that induction of major histocompatibility complex class I expression by transfection can lead to escape from NK cells in vivo.


1995 ◽  
Vol 108 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
V. Doring ◽  
F. Veretout ◽  
R. Albrecht ◽  
B. Muhlbauer ◽  
C. Schlatterer ◽  
...  

Dictyostelium discoideum cells harbor two annexin VII isoforms of 47 and 51 kDa which are present throughout development. In immunofluorescence and cell fractionation studies annexin VII was found in the cytoplasm and on the plasma membrane. In gene disruption mutants lacking both annexin VII isoforms growth, pinocytosis, phagocytosis, chemotaxis and motility were not significantly impaired under routine laboratory conditions, and the cells were able to complete the developmental cycle on bacterial plates. On non-nutrient agar plates development was delayed by three to four hours and a significant number of aggregates was no longer able to form fruiting bodies. Exocytosis as determined by measuring extracellular cAMP phosphodiesterase, alpha-fucosidase and alpha-mannosidase activity was unaltered, the total amounts of these enzymes were however lower in the mutant than in the wild type. The mutant cells were markedly impaired when they were exposed to low Ca2+ concentrations by adding EGTA to the nutrient medium. Under these conditions growth, motility and chemotaxis were severely affected. The Ca2+ concentrations were similar in mutant and wild-type cells both under normal and Ca2+ limiting conditions; however, the distribution was altered under low Ca2+ conditions in SYN-cells. The data suggest that annexin VII is not required for membrane fusion events but rather contributes to proper Ca2+ homeostasis in the cell.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 651-651 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Haiming Xu ◽  
Jason Towe ◽  
Chad E. Harris ◽  
Kathleen Szczur ◽  
...  

Abstract Neutrophils (PMN) are a critical cell in inflammatory processes. In response to environmental stimuli, they activate various signal transduction pathways allowing them to move rapidly to a site of microbial invasion and to perform phagocytosis, cytokine and oxygen substrate release. Rho GTPase proteins, Rac1, Rac2, CDC42 and Rho, are central regulators of cell movement via actin rearrangement. We have demonstrated the specific role of Rac1 and Rac2 in PMN functions (Gu and Filippi et al, Science 2003; Filippi et al. Nat Immuol., 2004) which raises the question of the specificity of the other Rho GTPases. CDC42 primarily regulates the formation of filopodia. CDC42 controls cell polarity and migration in hematopoietic cell lines. Most of previous studies have utilized dominant active or negative mutants which lack specificity and cannot be easily used to define in vivo cell biology. Here, we used mice genetically deficient in the CDC42 negative regulator CDC42 GTPase Activating Protein (GAP) to study the role of CDC42 in neutrophil functions in vitro and in vivo. Heterozygote (CDC42GAP+/−) or homozygote (CDC42GAP−/−) mutant mice displayed normal neutrophil differentiation in vitro and in vivo. PMN deficient in CDC42GAP displayed 2-fold increased in CDC42 activity. In vivo recruitment of PMN in peritoneal cavities after thioglycollate exposure was significantly impaired in CDC42GAP+/− mice compared with wild type (WT) mice (25.5±0.76 x 105 vs 35.7±0.38 x 105, p<0.05). Both CDC42GAP+/− and CDC42GAP−/− PMN demonstrated defective directed migration in vitro in response to fMLP in a Boyden chamber assay compared with WT (248±31 and 199±20 versus 314±29 migrated cells, p<0.05), suggesting that CDC42 plays a critical role in neutrophil migration in vitro and in vivo. To further understand the role of CDC42GAP in neutrophil migration, single-cell analysis by time-lapse videomicroscopy was performed. Surprisingly, CDC42GAP+/− PMN demonstrated higher migration velocity compared with WT cells in response to fMLP, but this increased speed was associated with an abnormal shape. Upon beta-2 integrin ligation, CDC42GAP+/− PMN demonstrated abnormal elongated trailing tail associated with increased tail filopodia. Importantly, the podosome-like structures identified by a vinculin ring surrounding F-actin at the ventral plasma membrane that are present in the leading edge of WT PMN was absent in the mutant cells. CDC42GAP−/− PMN demonstrated more dramatic F-actin impairment upon integrin ligation compared with CDC42GAP+/− and WT cells and remarkably showed complete loss of cell polarity, consistent with the known role of CDC42 in cell polarity. We hypothesize that the lack of podosome formation in mutant cells could account for the increased speed observed in CDC42GAP+/− cells and therefore result in ineffective directed migration in vivo. Altogether, this suggests that regulation of CDC42 activity plays a pivotal role in neutrophil migration likely via integrin-dependent podosome-like formation. This reinforces the importance of turnover of attachment structures during cell movement and suggests a new role for CDC42 in actin-based attachment structure in neutrophils.


2001 ◽  
Vol 21 (22) ◽  
pp. 7629-7640 ◽  
Author(s):  
Amine Nourani ◽  
Yannick Doyon ◽  
Rhea T. Utley ◽  
Stéphane Allard ◽  
William S. Lane ◽  
...  

ABSTRACT The yeast NuA4 complex is a histone H4 and H2A acetyltransferase involved in transcription regulation and essential for cell cycle progression. We identify here a novel subunit of the complex, Yng2p, a plant homeodomain (PHD)-finger protein homologous to human p33/ING1, which has tumor suppressor activity and is essential for p53 function. Mass spectrometry, immunoblotting, and immunoprecipitation experiments confirm the stable stoichiometric association of this protein with purified NuA4. Yeast cells harboring a deletion of theYNG2 gene show severe growth phenotype and have gene-specific transcription defects. NuA4 complex purified from the mutant strain is low in abundance and shows weak histone acetyltransferase activity. We demonstrate conservation of function by the requirement of Yng2p for p53 to function as a transcriptional activator in yeast. Accordingly, p53 interacts with NuA4 in vitro and in vivo, an interaction reminiscent of the p53-ING1 physical link in human cells. The growth defect of Δyng2 cells can be rescued by the N-terminal part of the protein, lacking the PHD-finger. While Yng2 PHD-finger is not required for p53 interaction, it is necessary for full expression of the p53-responsive gene and other NuA4 target genes. Transcriptional activation by p53 in vivo is associated with targeted NuA4-dependent histone H4 hyperacetylation, while histone H3 acetylation levels remain unchanged. These results emphasize the essential role of the NuA4 complex in the control of cell proliferation through gene-specific transcription regulation. They also suggest that regulation of mammalian cell proliferation by p53-dependent transcriptional activation functions through recruitment of an ING1-containing histone acetyltransferase complex.


2017 ◽  
Vol 37 (21) ◽  
Author(s):  
Peyman P. Aryanpur ◽  
Chelsea A. Regan ◽  
John M. Collins ◽  
Telsa M. Mittelmeier ◽  
David M. Renner ◽  
...  

ABSTRACT DEAD-box proteins (DBPs) are required in gene expression to facilitate changes to ribonucleoprotein complexes, but the cellular mechanisms and regulation of DBPs are not fully defined. Gle1 is a multifunctional regulator of DBPs with roles in mRNA export and translation. In translation, Gle1 modulates Ded1, a DBP required for initiation. However, DED1 overexpression causes defects, suggesting that Ded1 can promote or repress translation in different contexts. Here we show that GLE1 expression suppresses the repressive effects of DED1 in vivo and Gle1 counteracts Ded1 in translation assays in vitro. Furthermore, both Ded1 and Gle1 affect the assembly of preinitiation complexes. Through mutation analysis and binding assays, we show that Gle1 inhibits Ded1 by reducing its affinity for RNA. Our results are consistent with a model wherein active Ded1 promotes translation but inactive or excess Ded1 leads to translation repression. Gle1 can inhibit either role of Ded1, positioning it as a gatekeeper to optimize Ded1 activity to the appropriate level for translation. This study suggests a paradigm for finely controlling the activity of DEAD-box proteins to optimize their function in RNA-based processes. It also positions the versatile regulator Gle1 as a potential node for the coordination of different steps of gene expression.


1998 ◽  
Vol 18 (5) ◽  
pp. 2940-2948 ◽  
Author(s):  
Francisca Randez-Gil ◽  
Pascual Sanz ◽  
Karl-Dieter Entian ◽  
Jose Antonio Prieto

ABSTRACT The HXK2 gene is required for a variety of regulatory effects leading to an adaptation for fermentative metabolism inSaccharomyces cerevisiae. However, the molecular basis of the specific role of Hxk2p in these effects is still unclear. One important feature in order to understand the physiological function of hexokinase PII is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells. Here we show that Hxk2p exists in vivo in a dimeric-monomeric equilibrium which is affected by phosphorylation. Only the monomeric form appears phosphorylated, whereas the dimer does not. The reversible phosphorylation of Hxk2p is carbon source dependent, being more extensive on poor carbon sources such as galactose, raffinose, and ethanol. In vivo dephosphorylation of Hxk2p is promoted after addition of glucose. This effect is absent in glucose repression mutants cat80/grr1, hex2/reg1, andcid1/glc7. Treatment of a glucose crude extract fromcid1-226 (glc7-T152K) mutant cells with λ-phosphatase drastically reduces the presence of phosphoprotein, suggesting that CID1/GLC7 phosphatase together with its regulatory HEX2/REG1 subunit are involved in the dephosphorylation of the Hxk2p monomer. An HXK2 mutation encoding a serine-to-alanine change at position 15 [HXK2(S15A)] was to clarify the in vivo function of the phosphorylation of hexokinase PII. In this mutant, where the Hxk2 protein is unable to undergo phosphorylation, the cells could not provide glucose repression of invertase. Glucose induction ofHXT gene expression is also affected in cells expressing the mutated enzyme. Although we cannot rule out a defect in the metabolic state of the cell as the origin of these phenomena, our results suggest that the phosphorylation of hexokinase is essential in vivo for glucose signal transduction.


2004 ◽  
Vol 24 (23) ◽  
pp. 10277-10288 ◽  
Author(s):  
Raja Rajeswari Sivalenka ◽  
Rolf Jessberger

ABSTRACT SWAP-70, an unusual phosphatidylinositol-3-kinase-dependent protein that interacts with the RhoGTPase Rac, is highly expressed in mast cells. Cultured bone marrow mast cells (BMMC) from SWAP-70−/− mice are reduced in FcεRI-triggered degranulation. This report describes the hitherto-unknown role of SWAP-70 in c-kit receptor signaling, a key proliferation and differentiation pathway in mast cells. Consistent with the role of Rac in cell motility and regulation of the actin cytoskeleton, mutant cells show abnormal actin rearrangements and are deficient in migration in vitro and in vivo. SWAP-70−/− BMMC are impaired in calcium flux, in proper translocation and activity of Akt kinase (required for mast cell activation and survival), and in translocation of Rac1 and Rac2 upon c-kit stimulation. Adhesion to fibronectin is reduced, but homotypic cell association induced through c-kit is strongly increased in SWAP-70−/− BMMC. Homotypic association requires extracellular Ca2+ and depends on the integrin αLβ2 (LFA-1). ERK is hyperactivated upon c-kit signaling in adherent and dispersed mutant cells. Together, we suggest that SWAP-70 is an important regulator of specific effector pathways in c-kit signaling, including mast cell activation, migration, and cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document