scholarly journals The RNA Binding Protein hnRNP Q Modulates the Utilization of Exon 7 in the Survival Motor Neuron 2 (SMN2) Gene

2008 ◽  
Vol 28 (22) ◽  
pp. 6929-6938 ◽  
Author(s):  
Hung-Hsi Chen ◽  
Jan-Growth Chang ◽  
Ruei-Min Lu ◽  
Tsui-Yi Peng ◽  
Woan-Yuh Tarn

ABSTRACT Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by the homozygous loss of the SMN1 gene. The human SMN2 gene has a C-to-T transition at position +6 of exon 7 and thus produces exon 7-skipping mRNAs. However, we observed an unexpectedly high level of exon 7-containing SMN2 transcripts as well as SMN protein in testis of smn −/− SMN2 transgenic mice. Using affinity chromatography, we identified several SMN RNA-associating proteins in mouse testis and human HeLa cells, including hnRNP Q. The major hnRNP Q isoform, Q1, directly bound SMN exon 7 in the vicinity of nucleotide +6. Overexpression of hnRNP Q1 promoted the inclusion of exon 7 in SMN2, probably by activating the use of its upstream 3′ splice site. However, the minor isoforms Q2/Q3 could antagonize the activity of hnRNP Q1 and induced exon 7 exclusion. Intriguingly, enhanced exon 7 inclusion was also observed upon concomitant depletion of three hnRNP Q isoforms. Thus, differential expression of hnRNP Q isoforms may result in intricate control of SMN precursor mRNA splicing. Here, we demonstrate that hnRNP Q is a splicing modulator of SMN, further underscoring the potential of hnRNP Q as a therapeutic target for SMA.

2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Heidi Fuller ◽  
Marija Barišić ◽  
Đurđica Šešo-Šimić ◽  
Tea Špeljko ◽  
Glenn Morris ◽  
...  

AbstractProgress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.


2019 ◽  
Author(s):  
Katharina E. Meijboom ◽  
Viola Volpato ◽  
Jimena Monzón-Sandoval ◽  
Joseph M. Hoolachan ◽  
Suzan M. Hammond ◽  
...  

ABSTRACTSpinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify novel treatments to alleviate muscle pathology combining transcriptomics, proteomics and perturbational datasets. This revealed potential drug candidates for repurposing in SMA. One of the lead candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including SMN expression and lifespan. Our work highlights the potential of multiple, parallel data driven approaches for development of novel treatments for use in combination with SMN restoration therapies.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Rebecca Xu Xu ◽  
Lyndsay M. Murray M. Murray Murray ◽  
Yves De Repentigny De Repentigny ◽  
Rashmi Kothary Kothary

Spinal muscular atrophy (SMA) is a destructive pediatric neuromuscular disorder caused by low survival motor neuron (Smn) protein levels due to mutations and deletions within the survival motor neuron 1 (SMN1) gene. Motor neurons are the main pathological targets, and along with neuromuscular junctions (NMJs), they play an early significant role in the pathogenesis of SMA. Previous studies demonstrate that a pathological reduction in Smn levels can lead to significant remodeling defects in both the outgrowth of axonal sprouts and in the nerve-directed clustering of AChRs in mouse models. However, whether this pathological reduction in Smn leads to ubclinical features has not been investigated. Here, we have employed the Smn2B/2B and Smn+/- mouse models to study whether similar SMA pathology is present sub-clinically, and if so whether there is any compensation present. We show a decrease in the motor neuron number in the mouse models, no change in myelin thickness and modest NMJ pathology in both mouse models. Additionally, compensation through the expansion of the motor unit size is suggested.L’amyotrophie spinale (AMS) est un trouble neuromusculaire pédiatrique destructif causé par le niveau bas de protéine du neurone de moteur de survie (NMS) en raison des mutations et des effacements dans le neurone de moteur de survie 1 gène (NMS1). Des neurones du moteur sont les cibles pathologiques principales, et ce, avec des jonctions neuromusculaires (JNMs), ils jouent, en avance, un rôle significatif dans la pathogénie de AMS. Des études précédentes démontrent qu’une réduction pathologique de niveaux de NMS peut mener aux défauts importants de réorganisation tant dans l’excroissance axonale que dans l’agrégation du récepteur de l’acétylcholine (AChR) sous la terminaison nerveuse dans des modèles de souris. Cependant, si cette reduction pathologique de NMS mène aux caractéristiques infracliniques n’a pas été à l’étude. Ici, nous avons employé le NMS2B/2B et NMS +/- des modèles de souris afin de déterminer si une pathologie semblable à l’AMS est présente infracliniquement, ainsi s’il y a présence de quelconque compensation. Nous montrons une diminution dans le nombre des neurones du moteur dans les modèles de souris, aucun changement de l’épaisseur du myelin et une pathologie modeste de JNM dans les deux modèles de souris. De plus, une compensation par l’expansion de la taille d’unité du moteur est suggérée.


2018 ◽  
Vol 115 (20) ◽  
pp. E4604-E4612 ◽  
Author(s):  
Jingxin Wang ◽  
Peter G. Schultz ◽  
Kristen A. Johnson

RG-7916 is a first-in-class drug candidate for the treatment of spinal muscular atrophy (SMA) that functions by modulating pre-mRNA splicing of the SMN2 gene, resulting in a 2.5-fold increase in survival of motor neuron (SMN) protein level, a key protein lacking in SMA patients. RG-7916 is currently in three interventional phase 2 clinical trials for various types of SMA. In this report, we show that SMN-C2 and -C3, close analogs of RG-7916, act as selective RNA-binding ligands that modulate pre-mRNA splicing. Chemical proteomic and genomic techniques reveal that SMN-C2 directly binds to the AGGAAG motif on exon 7 of the SMN2 pre-mRNA, and promotes a conformational change in two to three unpaired nucleotides at the junction of intron 6 and exon 7 in both in vitro and in-cell models. This change creates a new functional binding surface that increases binding of the splicing modulators, far upstream element binding protein 1 (FUBP1) and its homolog, KH-type splicing regulatory protein (KHSRP), to the SMN-C2/C3–SMN2 pre-mRNA complex and enhances SMN2 splicing. These findings underscore the potential of small-molecule drugs to selectively bind RNA and modulate pre-mRNA splicing as an approach to the treatment of human disease.


Biomedicines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 21 ◽  
Author(s):  
Silvia Bonanno ◽  
Stefania Marcuzzo ◽  
Claudia Malacarne ◽  
Eleonora Giagnorio ◽  
Riccardo Masson ◽  
...  

Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN protein production, mitigating the phenotype. Antisense oligonucleotide nusinersen (Spinraza®) enhances SMN2 gene expression. SMN is involved in RNA metabolism and biogenesis of microRNA (miRNA), key gene expression modulators, whose dysregulation contributes to neuromuscular diseases. They are stable in body fluids and may reflect distinct pathophysiological states, thus acting as promising biomarkers. Muscle-specific miRNAs (myomiRs) as biomarkers for clinical use in SMA have not been investigated yet. Here, we analyzed the expression of miR-133a, -133b, -206 and -1, in serum of 21 infantile SMA patients at baseline and after 6 months of nusinersen treatment, and correlated molecular data with response to therapy evaluated by the Hammersmith Functional Motor Scale Expanded (HFMSE). Our results demonstrate that myomiR serological levels decrease over disease course upon nusinersen treatment. Notably, miR-133a reduction predicted patients’ response to therapy. Our findings identify myomiRs as potential biomarkers to monitor disease progression and therapeutic response in SMA patients.


2020 ◽  
Vol 21 (9) ◽  
pp. 3297 ◽  
Author(s):  
Tai-Heng Chen

Spinal muscular atrophy (SMA) is a congenital neuromuscular disorder characterized by motor neuron loss, resulting in progressive weakness. SMA is notable in the health care community because it accounts for the most common cause of infant death resulting from a genetic defect. SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from SMN1 gene mutations or deletions. However, patients always harbor various copies of SMN2, an almost identical but functionally deficient copy of the gene. A genotype–phenotype correlation suggests that SMN2 is a potent disease modifier for SMA, which also represents the primary target for potential therapies. Increasing comprehension of SMA pathophysiology, including the characterization of SMN1 and SMN2 genes and SMN protein functions, has led to the development of multiple therapeutic approaches. Until the end of 2016, no cure was available for SMA, and management consisted of supportive measures. Two breakthrough SMN-targeted treatments, either using antisense oligonucleotides (ASOs) or virus-mediated gene therapy, have recently been approved. These two novel therapeutics have a common objective: to increase the production of SMN protein in MNs and thereby improve motor function and survival. However, neither therapy currently provides a complete cure. Treating patients with SMA brings new responsibilities and unique dilemmas. As SMA is such a devastating disease, it is reasonable to assume that a unique therapeutic solution may not be sufficient. Current approaches under clinical investigation differ in administration routes, frequency of dosing, intrathecal versus systemic delivery, and mechanisms of action. Besides, emerging clinical trials evaluating the efficacy of either SMN-dependent or SMN-independent approaches are ongoing. This review aims to address the different knowledge gaps between genotype, phenotypes, and potential therapeutics.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Maximilian Paul Thelen ◽  
Brunhilde Wirth ◽  
Min Jeong Kye

AbstractSpinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of lower motor neurons, which leads to proximal muscle weakness and atrophy. SMA is caused by reduced survival motor neuron (SMN) protein levels due to biallelic deletions or mutations in the SMN1 gene. When SMN levels fall under a certain threshold, a plethora of cellular pathways are disturbed, including RNA processing, protein synthesis, metabolic defects, and mitochondrial function. Dysfunctional mitochondria can harm cells by decreased ATP production and increased oxidative stress due to elevated cellular levels of reactive oxygen species (ROS). Since neurons mainly produce energy via mitochondrial oxidative phosphorylation, restoring metabolic/oxidative homeostasis might rescue SMA pathology. Here, we report, based on proteome analysis, that SMA motor neurons show disturbed energy homeostasis due to dysfunction of mitochondrial complex I. This results in a lower basal ATP concentration and higher ROS production that causes an increase of protein carbonylation and impaired protein synthesis in SMA motor neurons. Counteracting these cellular impairments with pyruvate reduces elevated ROS levels, increases ATP and SMN protein levels in SMA motor neurons. Furthermore, we found that pyruvate-mediated SMN protein synthesis is mTOR-dependent. Most importantly, we showed that ROS regulates protein synthesis at the translational initiation step, which is impaired in SMA. As many neuropathies share pathological phenotypes such as dysfunctional mitochondria, excessive ROS, and impaired protein synthesis, our findings suggest new molecular interactions among these pathways. Additionally, counteracting these impairments by reducing ROS and increasing ATP might be beneficial for motor neuron survival in SMA patients.


2016 ◽  
Vol 10 ◽  
pp. JEN.S33122 ◽  
Author(s):  
Saif Ahmad ◽  
Kanchan Bhatia ◽  
Annapoorna Kannan ◽  
Laxman Gangwani

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.


2018 ◽  
Vol 46 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Frank Curmi ◽  
Ruben J. Cauchi

Gemin3, also known as DDX20 or DP103, is a DEAD-box RNA helicase which is involved in more than one cellular process. Though RNA unwinding has been determined in vitro, it is surprisingly not required for all of its activities in cellular metabolism. Gemin3 is an essential gene, present in Amoeba and Metazoa. The highly conserved N-terminus hosts the helicase core, formed of the helicase- and DEAD-domains, which, based on crystal structure determination, have key roles in RNA binding. The C-terminus of Gemin3 is highly divergent between species and serves as the interaction site for several accessory factors that could recruit Gemin3 to its target substrates and/or modulate its function. This review article focuses on the known roles of Gemin3, first as a core member of the survival motor neuron (SMN) complex, in small nuclear ribonucleoprotein biogenesis. Although mechanistic details are lacking, a critical function for Gemin3 in this pathway is supported by numerous in vitro and in vivo studies. Gene expression activities of Gemin3 are next underscored, mainly messenger ribonucleoprotein trafficking, gene silencing via microRNA processing, and transcriptional regulation. The involvement of Gemin3 in abnormal cell signal transduction pathways involving p53 and NF-κB is also highlighted. Finally, the clinical implications of Gemin3 deregulation are discussed including links to spinal muscular atrophy, poliomyelitis, amyotrophic lateral sclerosis, and cancer. Impressive progress made over the past two decades since the discovery of Gemin3 bodes well for further work that refines the mechanism(s) underpinning its multiple activities.


Sign in / Sign up

Export Citation Format

Share Document