Interleukin-1 synergy with phosphoinositide pathway agonists for induction of interleukin-2 gene expression: molecular basis of costimulation
The macrophage-derived cytokine interleukin-1 (IL-1) can provide a second signal with antigen to elicit production of interleukin-2 (IL-2) by helper T cells. The pathway(s) involved remains controversial, with protein kinase C and cyclic AMP (cAMP) invoked as possible second messengers. In the murine thymoma EL4.E1, IL-1 could synergize with the phosphoinositide pathway, because the cells made higher levels of IL-2 in the presence of IL-1 than could be induced by phorbol ester plus calcium ionophore alone. IL-1 is unlikely to act through a sustained increase in cAMP in these cells because it did not raise cAMP levels detectably and because IL-1 and forskolin had opposite effects on IL-2 gene expression. Inducible expression of a transfected reporter gene linked to a cloned fragment of the murine IL-2 gene promoter was initially increased by IL-1 costimulation, implying that IL-1 can increase the rate of transcription of IL-2. The minimal promoter elements required for iL-1 responsiveness were located within 321 bp of the IL-2 RNA cap site, and further upstream sequences to -2800 did not modify this response. IL-1 costimulation resulted in enhanced activity of both an inducible NF-kappa B-like factor and one of two distinct AP-1-like factors that bind to IL-2 regulatory sequences. Neither was induced, however, by IL-1 alone. Another AP-1-like factor and NFAT-1, while inducible in other cell types, were expressed constitutively in the EL4.E1 cells and were unaffected by IL-1. These results are discussed in terms of the combinatorial logic of IL-2 gene expression.