scholarly journals Nitrergic neuromuscular transmission in the mouse internal anal sphincter is accomplished by multiple pathways and postjunctional effector cells

2014 ◽  
Vol 307 (11) ◽  
pp. G1057-G1072 ◽  
Author(s):  
C. A. Cobine ◽  
A. G. Sotherton ◽  
L. E. Peri ◽  
K. M. Sanders ◽  
S. M. Ward ◽  
...  

The effector cells and second messengers participating in nitrergic neuromuscular transmission (NMT) were investigated in the mouse internal anal sphincter (IAS). Protein expression of guanylate cyclase (GCα, GCβ) and cyclic GMP-dependent protein kinase I (cGKI) were examined in cryostat sections with dual-labeling immunohistochemical techniques in PDGFRα+ cells, interstitial cells of Cajal (ICC), and smooth muscle cells (SMC). Gene expression levels were determined with quantitative PCR of dispersed cells from Pdgfrα egfp/+, Kit copGFP/+, and smMHC Cre-egfp mice sorted with FACS. The relative gene and protein expression levels of GCα and GCβ were PDGFRα+ cells > ICC ≫ SMC. In contrast, cGKI gene expression sequence was SMC = ICC > PDGFRα+ cells whereas cGKI protein expression sequence was neurons > SMC ≫ ICC = PDGFRα+ cells. The functional role of cGKI was investigated in cGKI −/− mice. Relaxation with 8-bromo (8-Br)-cGMP was greatly reduced in cGKI −/− mice whereas responses to sodium nitroprusside (SNP) were partially reduced and forskolin responses were unchanged. A nitrergic relaxation occurred with nerve stimulation (NS, 5 Hz, 60 s) in cGKI +/+ and cGKI −/− mice although there was a small reduction in the cGKI −/− mouse. Nω-nitro-l-arginine (l-NNA) abolished responses during the first 20–30 s of NS in both animals. The GC inhibitor ODQ greatly reduced or abolished SNP and nitrergic NS responses in both animals. These data confirm an essential role for GC in NO-induced relaxation in the IAS. However, the expression of GC and cGKI by all three cell types suggests that each may participate in coordinating muscular responses to NO. The persistence of nitrergic NMT in the cGKI −/− mouse suggests the presence of a significant GC-dependent, cGKI-independent pathway.

2020 ◽  
Author(s):  
Ghasem Ghasempour ◽  
Fahimeh Zamani-Garmsiri ◽  
Asghar Mohammadi ◽  
Mohammad Najafi

Abstract Background and Aims: Some saturated fatty acids are known to involve in atherosclerosis through different biologic pathways. The aim of this study was to investigate the effects of palmitic acid on the HCK gene and protein expression levels in vascular smooth muscle cells (VSMCs). Methods and Results: The cells were treated with palmitic acid (0.5 mM, 24 hours) on the cell viability assays. The HCK gene and protein expression levels were measured by real time q-PCR and western blot techniques, respectively. Oil Red O staining method was used to determine the intracellular lipid values. The HCK gene expression level was increased significantly in the PA-treated VSMCs (P 0.02). The total and phosphorylated HCK (p-HCK) protein expression levels increased in VSMCs. However, there was a significant increase in p-HCK value (P 0.001). Conclusion: The results showed that the palmitic acid increases p-HCK function so that it may affect the VSMC proliferation.


2018 ◽  
Vol 50 (6) ◽  
pp. 448-458 ◽  
Author(s):  
Patrick O’Brien ◽  
Rhys Hewett ◽  
Christopher Corpe

Distributed along the length of the gastrointestinal (GI) tract are nutrient sensing cells that release numerous signaling peptides influencing GI function, nutrient homeostasis and energy balance. Recent studies have shown a diurnal rhythm in GI nutrient sensing, but the mechanisms responsible for rhythmicity are poorly understood. In this report we studied murine GI sugar sensor gene and protein expression levels in the morning (7 AM) and evening (7 PM). Sweet taste receptor ( tas1r2/tas1r3/gnat3/gnat1) sugar transporter ( slc5a1, slc2a2, slc2a5) and putative sugar sensor ( slc5a4a and slc5a4b) gene expression levels were highest in tongue and proximal and distal small intestine, respectively. Clock gene ( cry2/arntl) activity was detected in all regions studied. Slc5a4a and slc5a4b gene expression showed clear diurnal rhythmicity in the small intestine and stomach, respectively, although no rhythmicity was detected in SGLT3 protein expression. Tas1r2, tas1r3, gnat1, and gcg displayed a limited rhythm in gene expression in proximal small intestine. Microarray analysis revealed a diurnal rhythm in gut peptide gene expression in tongue (7 AM vs. 7 PM) and in silico promoter analysis indicated intestinal sugar sensors and transporters possessed the canonical E box elements necessary for clock gene control over gene transcription. In this report we present evidence of a diurnal rhythm in genes that are responsible for intestinal nutrient sensing that is most likely controlled by clock gene activity. Disturbances in clock gene/nutrient sensing interactions may be important in the development of diet-related diseases, such as obesity and diabetes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Margaret R. Passmore ◽  
Maria Nataatmadja ◽  
John F. Fraser

The use of an appropriate control group in human research is essential in investigating the level of a pathological disorder. This study aimed to compare three alternative sources of control lung tissue and to determine their suitability for gene and protein expression studies. Gene and protein expression levels of the vascular endothelial growth factor (VEGF) and gelatinase families and their receptors were measured using real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The gene expression levels of VEGFA, placental growth factor (PGF), and their receptors, fms-related tyrosine kinase 1 (FLT1), and kinase insert domain receptor (KDR) as well as matrix metalloproteinase-2 (MMP-2) and the inhibitors, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-2 were significantly higher in lung cancer resections. The gene expression level of MMP-9 was significantly lower in the corresponding samples. Altered protein expression was also detected, depending on the area assessed. The results of this study show that none of the three control groups studied are completely suitable for gene and protein studies associated with the VEGF and gelatinase families, highlighting the need for researchers to be selective in which controls they opt for.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


2013 ◽  
Vol 3 ◽  
pp. 263-271
Author(s):  
Katarzyna Starska ◽  
Ewa Forma ◽  
Iwona Lewy-Trenda ◽  
Paweł Papież ◽  
Jan Woś ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A91-A91
Author(s):  
Jennifer Chew ◽  
Cedric Uytingco ◽  
Rapolas Spalinskas ◽  
Yifeng Yin ◽  
Joe Shuga ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of highly heterogeneous extracellular structures and cell types such as endothelial cells, immune cells, and fibroblasts that dynamically influence and communicate with each other. The constant interaction between a tumor and its microenvironment plays a critical role in cancer development and progression and can significantly affect a tumor’s response to therapy and capacity for multi-drug resistance. High resolution analyses of gene and protein expression with spatial context can provide deeper insights into the interactions between tumor cells and surrounding cells within the TME, where a better understanding of the underlying biology can improve treatment efficacy and patient outcomes. Here, we demonstrated the ability to perform streamlined multi-omic tumor analyses by utilizing the 10X Genomics Visium Spatial Gene Expression Solution for FFPE with multiplex protein enablement. This technique simultaneously assesses gene and protein expression to elucidate the immunological profile and microenvironment of different breast cancer samples in conjunction with standard pathological methods.MethodsSerial (5 µm) sections of FFPE human breast cancer samples were placed on Visium Gene Expression (GEX) slides. The Visium GEX slides incorporate ~5,000 molecularly barcoded, spatially encoded capture spots onto which tissue sections are placed, stained, and imaged. Following incubation with a human whole transcriptome, probe-based RNA panel and an immuno-oncology oligo-tagged antibody panel, developed with Abcam conjugated antibodies, the tissues are permeabilized and the representative probes are captured. Paired GEX and protein libraries are generated for each section and then sequenced on an Illumina NovaSeq at a depth of ~50,000 reads per spot. Resulting reads from both libraries are aligned and overlaid with H&E-stained tissue images, enabling analysis of both mRNA and protein expression. Additional analyses and data visualizations were performed on the Loupe Browser v4.1 desktop software.ConclusionsSpatial transcriptomics technology complements pathological examination by combining histological assessment with the throughput and deep biological insight of highly-multiplexed protein detection and RNA-seq. Taken together, our work demonstrated that Visium Spatial technology provides a spatially-resolved, multi-analyte view of the tumor microenvironment, where a greater understanding of cellular behavior in and around tumors can help drive discovery of new biomarkers and therapeutic targets.


2008 ◽  
Vol 294 (5) ◽  
pp. F1174-F1184 ◽  
Author(s):  
Valentina Câmpean ◽  
Britta Karpe ◽  
Christian Haas ◽  
Akram Atalla ◽  
Harm Peters ◽  
...  

Capillary neoformation is important in repair of glomerular injury of various origins. VEGF was shown to be crucial for glomerular capillary repair in glomerulonephritis (GN). We reasoned that other angiogenic factors are likewise involved in glomerular capillary remodeling and found angiopoietin 1 and -2 (ANG1 and ANG2) mRNA to be upregulated in cDNA microarrays of microdissected glomeruli of anti-Thy1.1 GN of the rat. We then studied glomerular in situ gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 in the course of anti-Thy1.1 GN, which was induced by injection of OX-7 antibody. Animals were perfusion fixed at days 6 and 12 after GN induction and compared with nonnephritic controls receiving PBS. Capillary damage and repair were quantitatively analyzed using stereological techniques. Gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 was analyzed using real-time quantitative PCR from microdissected glomeruli, nonradioactive in situ hybridization, double immunofluorescence, and Western blot analysis. Glomerular capillarization assessed as length density was significantly lower at day 6 of anti-Thy1.1 GN than in controls; it was back to normal values at day 12. ANG1 and ANG2 gene expression was markedly upregulated at day 6 of the disease compared with controls. Protein expression of ANG1 and ANG2 was confined to podocytes and that of Tie-2 to endothelial cells. At day 12 of anti-Thy1.1 GN when capillary restoration was nearly completed, ANG1 and ANG2 gene expression returned to basal levels, whereas Tie-2 expression was still high. With the use of a combined molecular and in situ approach, the spatial and temporal gene and protein expression of the angiopoietins and their receptor was analyzed in anti-Thy1.1 GN. The results indicate that glomerular expression of ANG1 and ANG2 and Tie-2 is differentially regulated and may contribute to healing and endothelial cell stabilization in experimental GN.


Medicina ◽  
2012 ◽  
Vol 48 (10) ◽  
pp. 78 ◽  
Author(s):  
Jelizaveta Sokolovska ◽  
Sergejs Isajevs ◽  
Olga Sugoka ◽  
Jelena Sharipova ◽  
Natalia Paramonova ◽  
...  

Background and Objective. Glucose transport via GLUT1 protein could be one of additional mechanisms of the antidiabetic action of sulfonylureas. Here, the GLUT1 gene and the protein expression was studied in rats in the course of severe and mild streptozotocin-induced diabetes mellitus and under glibenclamide treatment. Material and Methods. Severe and mild diabetes mellitus was induced using different streptozotocin doses and standard or high fat chow. Rats were treated with glibenclamide (2 mg/kg daily, per os for 6 weeks). The therapeutic effect of glibenclamide was monitored by measuring several metabolic parameters. The GLUT1 mRNA and the protein expression in the kidneys, heart, and liver was studied by means of real-time R T-PCR and immunohistochemistry. Results. The glibenclamide treatment decreased the blood glucose concentration and increased the insulin level in both models of severe and mild diabetes mellitus. Severe diabetes mellitus provoked an increase in both GLUT1 gene and protein expression in the kidneys and the heart, which was nearly normalized by glibenclamide. In the kidneys of mildly diabetic rats, an increase in the GLUT1 gene expression was neither confirmed on the protein level nor influenced by the glibenclamide treatment. In the liver of severely diabetic rats, the heart and the liver of mildly diabetic rats, the GLUT1 gene and the protein expression was changed independently of each other, which might be explained by abortive transcription, and pre- and posttranslational modifications of gene expression. Conclusions. The GLUT1 expression was found to be affected by the glucose and insulin levels and can be modulated by glibenclamide in severely and mildly diabetic rats. Glibenclamide can prevent the liver damage caused by severe hyperglycemia.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Neety Sahu ◽  
Gaurav Budhiraja ◽  
Anuradha Subramanian

Abstract Background Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS.


Sign in / Sign up

Export Citation Format

Share Document