scholarly journals Two forms of Drosophila melanogaster Gs alpha are produced by alternate splicing involving an unusual splice site.

1990 ◽  
Vol 10 (3) ◽  
pp. 910-917 ◽  
Author(s):  
F Quan ◽  
M A Forte

G proteins are responsible for modulating the activity of intracellular effector systems in response to receptor activation. The stimulatory G protein Gs is responsible for activation of adenylate cyclase in response to a variety of hormonal signals. In this report, we describe the structure of the gene for the alpha subunit of Drosophila melanogaster Gs. The gene is approximately 4.5 kilobases long and is divided into nine exons. The exon-intron structure of the Drosophila gene shows substantial similarity to that of the human gene for Gs alpha. Alternate splicing of intron 7, involving either use of an unusual TG or consensus AG 3' splice site, results in transcripts which code for either a long (DGs alpha L) or short (DGs alpha S) form of Gs alpha. These subunits differ by inclusion or deletion of three amino acids and substitution of a Ser for a Gly. The two forms of Drosophila Gs alpha differ in a region where no variation in the primary sequence of vertebrate Gs alpha subunits has been observed. In vitro translation experiments demonstrated that the Drosophila subunits migrate anomalously on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 51,000 and 48,000. Additional Gs alpha transcript heterogeneity reflects the use of multiple polyadenylation sites.

1990 ◽  
Vol 10 (3) ◽  
pp. 910-917
Author(s):  
F Quan ◽  
M A Forte

G proteins are responsible for modulating the activity of intracellular effector systems in response to receptor activation. The stimulatory G protein Gs is responsible for activation of adenylate cyclase in response to a variety of hormonal signals. In this report, we describe the structure of the gene for the alpha subunit of Drosophila melanogaster Gs. The gene is approximately 4.5 kilobases long and is divided into nine exons. The exon-intron structure of the Drosophila gene shows substantial similarity to that of the human gene for Gs alpha. Alternate splicing of intron 7, involving either use of an unusual TG or consensus AG 3' splice site, results in transcripts which code for either a long (DGs alpha L) or short (DGs alpha S) form of Gs alpha. These subunits differ by inclusion or deletion of three amino acids and substitution of a Ser for a Gly. The two forms of Drosophila Gs alpha differ in a region where no variation in the primary sequence of vertebrate Gs alpha subunits has been observed. In vitro translation experiments demonstrated that the Drosophila subunits migrate anomalously on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 51,000 and 48,000. Additional Gs alpha transcript heterogeneity reflects the use of multiple polyadenylation sites.


1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439 ◽  
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1982 ◽  
Vol 152 (3) ◽  
pp. 1117-1125
Author(s):  
J M Leventhal ◽  
G H Chambliss

The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.


1983 ◽  
Vol 3 (11) ◽  
pp. 1943-1948
Author(s):  
L J Kelly ◽  
R Kelly ◽  
H L Ennis

Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.


1991 ◽  
Vol 69 (8) ◽  
pp. 561-565 ◽  
Author(s):  
Gilles Paradis ◽  
Josée Gaudreau ◽  
Gilles Frenette ◽  
Michel Thabet ◽  
Roland R. Tremblay ◽  
...  

As a first step in understanding the changes in protein synthesis that occur in renal cell carcinoma, we have prepared poly(A)+ RNA from surgically removed tumors and from their normal tissue counterpart. These RNAs were then translated in vitro in the rabbit reticulocyte lysate system and the synthesized labeled polypeptides were separated by one- and two-dimensional gel electrophoresis. A major 25-kDa primary translation product was observed with all renal cell carcinomas. The synthesis of this protein was barely detectable with the RNA from normal tissue adjacent to the tumor. To determine if this protein could be further processed (removal of signal peptide and (or) core glycosylation), canine pancreatic microsomal membranes were added to the system. This addition resulted in the formation of a vertical row of three additional spots, with the same isoelectric point as the primary translation product and with molecular masses ranging from 27 to 31 kDa. The 31-kDa protein was retained on Concanavalin A. After digestion with endoglycosidase H, it was no longer visible on sodium dodecyl sulfate gels and a new 27-kDa band was generated suggesting that the mature protein was indeed a glycoprotein. Future experiments will be aimed at identifying this protein and examining its potential value as a marker of renal cell carcinoma.Key words: renal cancer, post-translational modifications, glycosylation, tumor markers.


1986 ◽  
Vol 64 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Helga Stan-Lotter ◽  
Philip D. Bragg

Without prior fractionation, the number of sulfhydryl groups of individual polypeptides in a protein mixture can be determined, provided their molecular weights and approximate isoelectric points are known. Urea-denatured protein samples are reacted with iodoacetamide and iodoacetate in a modified version of Creighton's procedure. After separation by sodium dodecyl sulfate – polyacrylamide gel electrophoresis and isoelectric focusing, the number of sulfhydryl groups is determined by counting the protein bands which have additional negative charges. This method requires little material and provides an additional parameter, besides the molecular weight and isoelectric point, for the identification and characterization of a protein. The sensitivity may be enhanced for nonradioactive proteins by using 14C-labeled iodoacetamide and iodoacetate. The procedure has been applied to prokaryotic in vitro protein synthesis mixtures, bacterial membrane protein, and trypsin-cleaved or chemically cross-linked subunits of the F1 ATPase from Escherichia coli.


1997 ◽  
Vol 17 (5) ◽  
pp. 2774-2780 ◽  
Author(s):  
C F Kennedy ◽  
S M Berget

The minimum size for splicing of a vertebrate intron is approximately 70 nucleotides. In Drosophila melanogaster, more than half of the introns are significantly below this minimum yet function well. Such short introns often lack the pyrimidine tract located between the branch point and 3' splice site common to metazoan introns. To investigate if small introns contain special sequences that facilitate their recognition, the sequences and factors required for the splicing of a 59-nucleotide intron from the D. melanogaster mle gene have been examined. This intron contains only a minimal region of interrupted pyrimidines downstream of the branch point. Instead, two longer, uninterrupted C-rich tracts are located between the 5' splice site and branch point. Both of these sequences are required for maximal in vivo and in vitro splicing. The upstream sequences are also required for maximal binding of factors to the 5' splice site, cross-linking of U2AF to precursor RNA, and assembly of the active spliceosome, suggesting that sequences upstream of the branch point influence events at both ends of the small mle intron. Thus, a very short intron lacking a classical pyrimidine tract between the branch point and 3' splice site requires accessory pyrimidine sequences in the short region between the 5' splice site and branch point.


1987 ◽  
Vol 65 (8) ◽  
pp. 762-765 ◽  
Author(s):  
Resham S. Bhella ◽  
Illimar Altosaar

The biosynthesis of glucoamylases in Aspergillus awamori was studied by in vivo protein labelling and analysis of glucoamylase-specific mRNAs. Two types of glucoamylases with molecular weights of 100 000 and 82 000 were shown to be synthesized de novo. Deglycosylation of the 100 000 molecular weight glucoamylase type resulted in the formation of another glucoamylase form with molecular weight of about 94 000. De novo synthesis of two types of glucoamylases was further confirmed by the existence of two types of glucoamylase-specific mRNAs, as demonstrated by in vitro translation and Northern blot analysis studies.


Sign in / Sign up

Export Citation Format

Share Document