scholarly journals Synergistic transcriptional activation by CTF/NF-I and the estrogen receptor involves stabilized interactions with a limiting target factor.

1991 ◽  
Vol 11 (6) ◽  
pp. 2937-2945 ◽  
Author(s):  
E Martinez ◽  
Y Dusserre ◽  
W Wahli ◽  
N Mermod

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.

1991 ◽  
Vol 11 (6) ◽  
pp. 2937-2945
Author(s):  
E Martinez ◽  
Y Dusserre ◽  
W Wahli ◽  
N Mermod

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


2002 ◽  
Vol 83 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Nikita Avvakumov ◽  
Majdina Sahbegovic ◽  
Zhiying Zhang ◽  
Michael Shuen ◽  
Joe S. Mymryk

Adenovirus type 5 E1A proteins interact with cellular regulators of transcription to reprogram gene expression in the infected or transformed cell. Although E1A also interacts with DNA directly in vitro, it is not clear how this relates to its function in vivo. The N-terminal conserved regions 1, 2 and 3 and the C-terminal portions of E1A were prepared as purified recombinant proteins and analyses showed that only the C-terminal region bound DNA in vitro. Deletion of E1A amino acids 201–220 inhibited binding and a minimal fragment encompassing amino acids 201–218 of E1A was sufficient for binding single- and double-stranded DNA. This portion of E1A also bound the cation-exchange resins cellulose phosphate and carboxymethyl Sepharose. As this region contains six basic amino acids, in vitro binding of E1A to DNA probably results from an ionic interaction with the phosphodiester backbone of DNA. Studies in Saccharomyces cerevisiae have shown that expression of a strong transcriptional activation domain fused to a DNA-binding domain can inhibit growth. Although fusion of the C-terminal region of E1A to a strong transcriptional activation domain inhibited growth when expressed in yeast, this was not mediated by the DNA-binding domain identified in vitro. These data suggest that E1A does not bind DNA in vivo.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067 ◽  
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


2000 ◽  
Vol 182 (4) ◽  
pp. 1118-1126 ◽  
Author(s):  
Niilo Kaldalu ◽  
Urve Toots ◽  
Victor de Lorenzo ◽  
Mart Ustav

ABSTRACT The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 141-149 ◽  
Author(s):  
F. Payre ◽  
S. Noselli ◽  
V. Lefrere ◽  
A. Vincent

Serendipity (sry) beta (beta) and delta (delta) are two finger protein genes resulting from a duplication event. Comparison of their respective protein products shows interspersed blocks of conserved and divergent amino-acid sequences. The most extensively conserved region corresponds to the predicted DNA-binding domain which includes 6 contiguous fingers; no significant sequence conservation is found upstream and downstream of the protein-coding region. We have analysed the evolutionary divergence of the sry beta and delta proteins on two separate levels, their embryonic pattern of expression and their DNA-binding properties in vitro and in vivo. By using specific antibodies and transformant lines containing beta-galactosidase fusion genes, we show that the sry beta and sry delta proteins are maternally inherited and present in embryonic nuclei at the onset of zygotic transcription, suggesting that they are transcription factors involved in this process. Zygotic synthesis of the sry beta protein starts during nuclear division cycles 12–13, prior to cellularisation of the blastoderm, while the zygotic sry delta protein is not detectable before germ band extension (stage 10 embryos). Contrary to sry delta, the zygotic sry beta protein constitutes only a minor fraction of the total embryonic protein. The sry beta and delta proteins made in E. coli bind to DNA, with partly overlapping specificities. Their in vivo patterns of binding to DNA, visualised by immunostaining polytene chromosomes, differ both in the number and position of their binding sites. Thus changes in expression pattern and DNA-binding specificity have contributed to the evolution of the sry beta and delta genes.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Zuolin Li ◽  
Jia-ling Ji ◽  
Linli Lv ◽  
Yan Yang ◽  
Tao-tao Tang ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) is increasingly recognized as a major risk factor for progression to CKD. However, the mechanisms governing AKI to CKD progression are poorly understood. Hypoxia is a key player in the pathophysiology of the AKI to CKD transition. Thus, we aimed to investigate the exact mechanisms of AKI to CKD progression mediated by hypoxia. Method Mild ischemic injury and severe ischemic injury (AKI-to-CKD transition) were established by clamping renal pedicle for 30 and 40 minutes, respectively. Meanwhile, the mice model of AKI-to-CKD transition was treated with HIF-1α inhibitor, PX-478. In vitro, PHD inhibition and combined PHD with FIH inhibition mimic the HIF-1α activation caused by mild or severe hypoxia, respectively. Besides the human proximal tubular epithelial cell line HK-2, tubular cells were isolated from mice for primary culture. KLF5 knockdown, FIH and HIF-1α C-terminal transcriptional activation domain (C-TAD) overexpression in tubular cells were achieved by Lentiviral transfection. Immunocoprecipitation was used to explore the relationship between the HIF-1α and FIH-1. Luciferase reporter assay was used to investigate whether KLF5 was regulated transcriptionally by HIF-1α C-TAD. To explore the roles of FIH-1 and HIF-1α C-TAD in vivo, FIH-1 and HIF-1α C-TAD overexpression (Lentivirus-mediated) was given after severe ischemic injury or mild ischemic injury via tail vein injection, respectively. Results AKI to CKD progression was highly associated with the time-course expression of tubular HIF-1α in severe ischemia/reperfusion injury. Interestingly, ameliorated AKI-to-CKD transition was observed by treating PX-478, which destabilized HIF-1α. In vitro, fibrogenesis could be induced by combined PHD with FIH inhibitor treatment in TEC. More interestingly, alleviated fibrogenesis could be achieved by knockdown of KLF5 and overexpression of FIH, respectively, while HIF-1α C-TAD overexpression promoted fibrogenesis in tubular cells. Immunocoprecipitation results indicated that HIF-1α and FIH-1 are interactive. Furthermore, we demonstrated that KLF5 could be regulated transcriptionally by HIF-1α C-TAD by luciferase reporter assay. In vivo, AKI to CKD progression was ameliorated significantly when mice model of AKI-to-CKD transition intervened with FIH-1 overexpression (Lentivirus-mediated). However, treatment of HIF-1α C-TAD (Lentivirus-mediated) in mild ischemic injury model could promote progression of CKD significantly. Conclusion FIH-1 mediated HIF-1α C-TAD activation was the key mechanism of AKI to CKD transition by transcriptionally regulating the KLF5 pathway in tubules. Blockade of FIH-1 mediated HIF-1α C-TAD in tubules may serve as a novel therapeutic approach to ameliorate AKI to CKD progression.


1996 ◽  
Vol 16 (5) ◽  
pp. 2044-2055 ◽  
Author(s):  
J Blau ◽  
H Xiao ◽  
S McCracken ◽  
P O'Hare ◽  
J Greenblatt ◽  
...  

We have studied the abilities of different transactivation domains to stimulate the initiation and elongation (postinitiation) steps of RNA polymerase II transcription in vivo. Nuclear run-on and RNase protection analyses revealed three classes of activation domains: Sp1 and CTF stimulated initiation (type I); human immunodeficiency virus type 1 Tat fused to a DNA binding domain stimulated predominantly elongation (type IIA); and VP16, p53, and E2F1 stimulated both initiation and elongation (type IIB). A quadruple point mutation of VP16 converted it from a type IIB to a type I activator. Type I and type IIA activators synergized with one another but not with type IIB activators. This observation implies that synergy can result from the concerted action of factors stimulating two different steps in transcription: initiation and elongation. The functional differences between activators may be explained by the different contacts they make with general transcription factors. In support of this idea, we found a correlation between the abilities of activators, including Tat, to stimulate elongation and their abilities to bind TFIIH.


Sign in / Sign up

Export Citation Format

Share Document