scholarly journals In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity.

1993 ◽  
Vol 13 (5) ◽  
pp. 2815-2821 ◽  
Author(s):  
J P Tassan ◽  
K Le Guellec ◽  
M Kress ◽  
M Faure ◽  
J Camonis ◽  
...  

We have performed a differential screen of a Xenopus egg cDNA library and selected two clones (Cl1 and Cl2) corresponding to mRNA which are specifically adenylated and recruited into polysomes after fertilization. Sequence analysis of Cl1 reveals that the corresponding protein is 67.5% identical (83% similar) to the product of the Saccharomyces cerevisiae SUP45 (also called SUP1 or SAL4) gene. This gene, when mutated, is an omnipotent suppressor of nonsense codons. When expressed in a sup45 mutant, the Xenopus Cl1 cDNA was able to suppress sup45-related phenotypes, showing that the structural homology reflects a functional homology. Our discovery of a structural and functional homolog in Xenopus cells implies that the function of SUP45 is not restricted to lower eukaryotes and that the SUP45 protein may perform a crucial cellular function in higher eukaryotes.

1993 ◽  
Vol 13 (5) ◽  
pp. 2815-2821
Author(s):  
J P Tassan ◽  
K Le Guellec ◽  
M Kress ◽  
M Faure ◽  
J Camonis ◽  
...  

We have performed a differential screen of a Xenopus egg cDNA library and selected two clones (Cl1 and Cl2) corresponding to mRNA which are specifically adenylated and recruited into polysomes after fertilization. Sequence analysis of Cl1 reveals that the corresponding protein is 67.5% identical (83% similar) to the product of the Saccharomyces cerevisiae SUP45 (also called SUP1 or SAL4) gene. This gene, when mutated, is an omnipotent suppressor of nonsense codons. When expressed in a sup45 mutant, the Xenopus Cl1 cDNA was able to suppress sup45-related phenotypes, showing that the structural homology reflects a functional homology. Our discovery of a structural and functional homolog in Xenopus cells implies that the function of SUP45 is not restricted to lower eukaryotes and that the SUP45 protein may perform a crucial cellular function in higher eukaryotes.


2006 ◽  
Vol 26 (9) ◽  
pp. 3390-3400 ◽  
Author(s):  
Weirong Wang ◽  
Iván J. Cajigas ◽  
Stuart W. Peltz ◽  
Miles F. Wilkinson ◽  
Carlos I. González

ABSTRACT Premature termination (nonsense) codons trigger rapid mRNA decay by the nonsense-mediated mRNA decay (NMD) pathway. Two conserved proteins essential for NMD, UPF1 and UPF2, are phosphorylated in higher eukaryotes. The phosphorylation and dephosphorylation of UPF1 appear to be crucial for NMD, as blockade of either event in Caenorhabditis elegans and mammals largely prevents NMD. The universality of this phosphorylation/dephosphorylation cycle pathway has been questioned, however, because the well-studied Saccharomyces cerevisiae NMD pathway has not been shown to be regulated by phosphorylation. Here, we used in vitro and in vivo biochemical techniques to show that both S. cerevisiae Upf1p and Upf2p are phosphoproteins. We provide evidence that the phosphorylation of the N-terminal region of Upf2p is crucial for its interaction with Hrp1p, an RNA-binding protein that we previously showed is essential for NMD. We identify specific amino acids in Upf2p's N-terminal domain, including phosphorylated serines, which dictate both its interaction with Hrp1p and its ability to elicit NMD. Our results indicate that phosphorylation of UPF1 and UPF2 is a conserved event in eukaryotes and for the first time provide evidence that Upf2p phosphorylation is crucial for NMD.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1569-1579 ◽  
Author(s):  
Michael L Rolfsmeier ◽  
Michael J Dixon ◽  
Luis Pessoa-Brandão ◽  
Richard Pelletier ◽  
Juan José Miret ◽  
...  

Abstract Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of ∼15–17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 553-562
Author(s):  
Margaret I Kanipes ◽  
John E Hill ◽  
Susan A Henry

Abstract The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Δ) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


1988 ◽  
Vol 8 (2) ◽  
pp. 978-981
Author(s):  
C N Giroux ◽  
J R Mis ◽  
M K Pierce ◽  
S E Kohalmi ◽  
B A Kunz

A collection of 196 spontaneous mutations in the SUP4-o gene of the yeast Saccharomyces cerevisiae was analyzed by DNA sequencing. The classes of mutation identified included all possible types of base-pair substitution, deletions of various lengths, complex alterations involving multiple changes, and insertions of transposable elements. Our findings demonstrate that at least several different mechanisms are responsible for spontaneous mutagenesis in S. cerevisiae.


1989 ◽  
Vol 9 (10) ◽  
pp. 4571-4575
Author(s):  
J M Song ◽  
S Picologlou ◽  
C M Grant ◽  
M Firoozan ◽  
M F Tuite ◽  
...  

Changes in the dosage of genes encoding elongation factor EF-1 alpha were shown to cause parallel changes in the misreading of nonsense codons. Higher amounts of EF-1 alpha were correlated with increased nonsense suppression, suggesting that the level of EF-1 alpha is critically involved in translational fidelity.


1995 ◽  
Vol 15 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
Z Guo ◽  
F Sherman

It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.


Genetics ◽  
1985 ◽  
Vol 111 (2) ◽  
pp. 233-241
Author(s):  
Joachim F Ernst ◽  
D Michael Hampsey ◽  
Fred Sherman

ABSTRACT ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G·C additions at sites containing monotonous runs of three G·C base pairs. However, some (see PDF) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G·C base pairs.


Sign in / Sign up

Export Citation Format

Share Document