scholarly journals Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes.

1995 ◽  
Vol 15 (7) ◽  
pp. 3786-3795 ◽  
Author(s):  
Q Lu ◽  
P S Knoepfler ◽  
J Scheele ◽  
D D Wright ◽  
M P Kamps

E2A-PBX1 is the oncogene produced at the t(1;19) chromosomal breakpoint of pediatric pre-B-cell leukemia. Expression of E2A-Pbx1 induces fibroblast transformation and myeloid and T-cell leukemia in mice and arrests differentiation of granulocyte macrophage colony-stimulating factor-dependent myeloblasts in cultured marrow. Recently, the Drosophila melanogaster protein Exd, which is highly related to Pbx1, was shown to bind DNA cooperatively with the Drosophila homeodomain proteins Ubx and Abd-A. Here, we demonstrate that the normal Pbx1 homeodomain protein, as well as its oncogenic derivative, E2A-Pbx1, binds the DNA sequence ATCAATCAA cooperatively with the murine Hox-A5, Hox-B7, Hox-B8, and Hox-C8 homeodomain proteins, which are themselves known oncoproteins, as well as with the Hox-D4 homeodomain protein. Cooperative binding to ATCAATCAA required the homeodomain-dependent DNA-binding activities of both Pbx1 and the Hox partner. In cotransfection assays, Hox-B8 suppressed transactivation by E2A-Pbx1. These results suggest that (i) Pbx1 may participate in the normal regulation of Hox target gene transcription in vivo and therein contribute to aspects of anterior-posterior patterning and structural development in vertebrates, (ii) that E2A-Pbx1 could abrogate normal differentiation by altering the transcriptional regulation of Hox target genes in conjunction with Hox proteins, and (iii) that the oncogenic mechanism of certain Hox proteins may require their physical interaction with Pbx1 as a cooperating, DNA-binding partner.

1994 ◽  
Vol 14 (7) ◽  
pp. 4532-4545
Author(s):  
I Pellerin ◽  
C Schnabel ◽  
K M Catron ◽  
C Abate

The hox genes, members of a family of essential developmental regulators, have the intriguing property that their expression in the developing murine embryo is colinear with their chromosomal organization. Members of the hox gene family share a conserved DNA binding domain, termed the homeodomain, which mediates interactions of Hox proteins with DNA regulatory elements in the transcriptional control regions of target genes. In this study, we characterized the DNA binding properties of five representative members of the Hox family: HoxA5, HoxB4, HoxA7, HoxC8, and HoxB1. To facilitate a comparative analysis of their DNA binding properties, we produced the homeodomain regions of these Hox proteins in Escherichia coli and obtained highly purified polypeptides. We showed that these Hox proteins interact in vitro with a common consensus DNA site that contains the motif (C/G)TAATTG. We further showed that the Hox proteins recognize the consensus DNA site in vivo, as determined by their ability to activate transcription through this site in transient transfection assays. Although they interact optimally with the consensus DNA site, the Hox proteins exhibit subtle, but distinct, preferences for DNA sites that contain variations of the nucleotides within the consensus motif. In addition to their modest differences in DNA binding specificities, the Hox proteins also vary in their relative affinities for DNA. Intriguingly, their relative affinities correlate with the positions of their respective genes on the hox cluster. These findings suggest that subtle differences in DNA binding specificity combined with differences in DNA binding affinity constitute features of the "Hox code" that contribute to the selective functions of Hox proteins during murine embryogenesis.


1994 ◽  
Vol 14 (7) ◽  
pp. 4532-4545 ◽  
Author(s):  
I Pellerin ◽  
C Schnabel ◽  
K M Catron ◽  
C Abate

The hox genes, members of a family of essential developmental regulators, have the intriguing property that their expression in the developing murine embryo is colinear with their chromosomal organization. Members of the hox gene family share a conserved DNA binding domain, termed the homeodomain, which mediates interactions of Hox proteins with DNA regulatory elements in the transcriptional control regions of target genes. In this study, we characterized the DNA binding properties of five representative members of the Hox family: HoxA5, HoxB4, HoxA7, HoxC8, and HoxB1. To facilitate a comparative analysis of their DNA binding properties, we produced the homeodomain regions of these Hox proteins in Escherichia coli and obtained highly purified polypeptides. We showed that these Hox proteins interact in vitro with a common consensus DNA site that contains the motif (C/G)TAATTG. We further showed that the Hox proteins recognize the consensus DNA site in vivo, as determined by their ability to activate transcription through this site in transient transfection assays. Although they interact optimally with the consensus DNA site, the Hox proteins exhibit subtle, but distinct, preferences for DNA sites that contain variations of the nucleotides within the consensus motif. In addition to their modest differences in DNA binding specificities, the Hox proteins also vary in their relative affinities for DNA. Intriguingly, their relative affinities correlate with the positions of their respective genes on the hox cluster. These findings suggest that subtle differences in DNA binding specificity combined with differences in DNA binding affinity constitute features of the "Hox code" that contribute to the selective functions of Hox proteins during murine embryogenesis.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 155-166 ◽  
Author(s):  
E. Ferretti ◽  
H. Marshall ◽  
H. Popperl ◽  
M. Maconochie ◽  
R. Krumlauf ◽  
...  

Direct auto- and cross-regulatory interactions between Hox genes serve to establish and maintain segmentally restricted patterns in the developing hindbrain. Rhombomere r4-specific expression of both Hoxb1 and Hoxb2 depends upon bipartite cis Hox response elements for the group 1 paralogous proteins, Hoxal and Hoxbl. The DNA-binding ability and selectivity of these proteins depend upon the formation of specific heterodimeric complexes with members of the PBC homeodomain protein family (Pbx genes). The r4 enhancers from Hoxb1 and Hoxb2 have the same activity, but differ with respect to the number and organisation of bipartite Pbx/Hox (PH) sites required, suggesting the intervention of other components/sequences. We report here that another family of homeodomain proteins (TALE, Three-Amino acids-Loop-Extension: Prep1, Meis, HTH), capable of dimerizing with Pbx/EXD, is involved in the mechanisms of r4-restricted expression. We show that: (1) the r4-specific Hoxb1 and Hoxb2 enhancers are complex elements containing separate PH and Prep/Meis (PM) sites; (2) the PM site of the Hoxb2, but not Hoxb1, enhancer is essential in vivo for r4 expression and also influences other sites of expression; (3) both PM and PH sites are required for in vitro binding of Prepl-Pbx and formation and binding of a ternary Hoxbl-Pbxla (or 1b)-Prepl complex. (4) A similar ternary association forms in nuclear extracts from embryonal P19 cells, but only upon retinoic acid induction. This requires synthesis of Hoxbl and also contains Pbx with either Prepl or Meisl. Together these findings highlight the fact that PM sites are found in close proximity to bipartite PH motifs in several Hox responsive elements shown to be important in vivo and that such sites play an essential role in potentiating regulatory activity in combination with the PH motifs.


2001 ◽  
Vol 21 (21) ◽  
pp. 7509-7522 ◽  
Author(s):  
Wei-fang Shen ◽  
Keerthi Krishnan ◽  
H. J. Lawrence ◽  
Corey Largman

ABSTRACT Despite the identification of PBC proteins as cofactors that provide DNA affinity and binding specificity for the HOX homeodomain proteins, HOX proteins do not demonstrate robust activity in transient-transcription assays and few authentic downstream targets have been identified for these putative transcription factors. During a search for additional cofactors, we established that each of the 14 HOX proteins tested, from 11 separate paralog groups, binds to CBP or p300. All six isolated homeodomain fragments tested bind to CBP, suggesting that the homeodomain is a common site of interaction. Surprisingly, CBP-p300 does not form DNA binding complexes with the HOX proteins but instead prevents their binding to DNA. The HOX proteins are not substrates for CBP histone acetyltransferase (HAT) but instead inhibit the activity of CBP in both in vitro and in vivo systems. These mutually inhibitory interactions are reflected by the inability of CBP to potentiate the low levels of gene activation induced by HOX proteins in a range of reporter assays. We propose two models for HOX protein function: (i) HOX proteins may function without CBP HAT to regulate transcription as cooperative DNA binding molecules with PBX, MEIS, or other cofactors, and (ii) the HOX proteins may inhibit CBP HAT activity and thus function as repressors of gene transcription.


Development ◽  
1999 ◽  
Vol 126 (22) ◽  
pp. 5137-5148 ◽  
Author(s):  
H.D. Ryoo ◽  
T. Marty ◽  
F. Casares ◽  
M. Affolter ◽  
R.S. Mann

To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.


1995 ◽  
Vol 15 (12) ◽  
pp. 7091-7097 ◽  
Author(s):  
B Peers ◽  
S Sharma ◽  
T Johnson ◽  
M Kamps ◽  
M Montminy

A number of homeodomain proteins have been shown to regulate cellular development by stimulating the transcription of specific target genes. In contrast to their distinct activities in vivo, however, most homeodomain proteins bind indiscriminately to potential target sites in vitro, suggesting the involvement of cofactors which specify target site selection. One such cofactor, termed extradenticle, has been shown to influence segmental morphogenesis in Drosophila melanogaster by binding cooperatively with certain homeodomain proteins to target regulatory elements. Here we demonstrate that STF-1, an orphan homeodomain protein required for pancreatic development in mammals, binds cooperatively to DNA with Pbx, the mammalian homolog of extradenticle. Cooperative binding with Pbx requires a pentapeptide motif (FPWMK) which is well conserved among a large subset of homeodomain proteins. The FPMWK motif is not sufficient to confer Pbx cooperativity on other homeodomain proteins, however; the N-terminal arm of the STF-1 homeodomain is also essential. As cooperative binding with Pbx occurs on only a subset of potential STF-1 target sites, our results suggest that Pbx may specify target gene selection in the developing pancreas by forming heterodimeric complexes with STF-1.


2000 ◽  
Vol 20 (15) ◽  
pp. 5540-5553 ◽  
Author(s):  
Yue Liu ◽  
April L. Colosimo ◽  
Xiang-Jiao Yang ◽  
Daiqing Liao

ABSTRACT The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.


2007 ◽  
Vol 27 (22) ◽  
pp. 7839-7847 ◽  
Author(s):  
Subir K. Ray ◽  
Andrew B. Leiter

ABSTRACT The basic helix-loop-helix transcription factor NeuroD1 is required for late events in neuronal differentiation, for maturation of pancreatic β cells, and for terminal differentiation of enteroendocrine cells expressing the hormone secretin. NeuroD1-null mice demonstrated that this protein is essential for expression of the secretin gene in the murine intestine, and yet it is a relatively weak transcriptional activator by itself. The present study shows that Sp1 and NeuroD1 synergistically activate transcription of the secretin gene. NeuroD1, but not its widely expressed dimerization partner E12, physically interacts with the C-terminal 167 amino acids of Sp1, which include its DNA binding zinc fingers. NeuroD1 stabilizes Sp1 DNA binding to an adjacent Sp1 binding site on the promoter to generate a higher-order DNA-protein complex containing both proteins and facilitates Sp1 occupancy of the secretin promoter in vivo. NeuroD-dependent transcription of the genes encoding the hormones insulin and proopiomelanocortin is potentiated by lineage-specific homeodomain proteins. The stabilization of binding of the widely expressed transcription factor Sp1 to the secretin promoter by NeuroD represents a distinct mechanism from other NeuroD target genes for increasing NeuroD-dependent transcription.


1995 ◽  
Vol 15 (10) ◽  
pp. 5811-5819 ◽  
Author(s):  
P S Knoepfler ◽  
M P Kamps

The vertebrate Hox genes, which represent a subset of all homeobox genes, encode proteins that regulate anterior-posterior positional identity during embryogenesis and are cognates of the Drosophila homeodomain proteins encoded by genes composing the homeotic complex (HOM-C). Recently, we demonstrated that multiple Hox proteins bind DNA cooperatively with both Pbx1 and its oncogenic derivative, E2A-Pbx1. Here, we show that the highly conserved pentapeptide motif F/Y-P-W-M-R/K, which occurs in numerous Hox proteins and is positioned 8 to 50 amino acids N terminal to the homeodomain, is essential for cooperative DNA binding with Pbx1 and E2A-Pbx1. Point mutational analysis demonstrated that the tryptophan and methionine residues within the core of this motif were critical for cooperative DNA binding. A peptide containing the wild-type pentapeptide sequence, but not one in which phenylalanine was substituted for tryptophan, blocked the ability of Hox proteins to bind cooperatively with Pbx1 or E2A-Pbx1, suggesting that the pentapeptide itself provides at least one surface through which Hox proteins bind Pbx1. Furthermore, the same peptide, but not the mutant peptide, stimulated DNA binding by Pbx1, suggesting that interaction of Hox proteins with Pbx1 through the pentapeptide motif raises the DNA-binding ability of Pbx1.


Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2007-2014 ◽  
Author(s):  
S.K. Chan ◽  
H.D. Ryoo ◽  
A. Gould ◽  
R. Krumlauf ◽  
R.S. Mann

The homeodomain proteins encoded by the Hox complex genes do not bind DNA with high specificity. In vitro, Hox specificity can be increased by binding to DNA cooperatively with the homeodomain protein extradenticle or its vertebrate homologs, the pbx proteins (together, the PBC family). Here we show that a two basepair change in a Hox-PBC binding site switches the Hox-dependent expression pattern generated in vivo, from labial to Deformed. The change in vivo correlates with an altered Hox binding specificity in vitro. Further, we identify similar Deformed-PBC binding sites in the Deformed and Hoxb-4 genes and show that they generate Deformed or Hoxb-4 expression patterns in Drosophila and mouse embryos, respectively. These results suggest a model in which Hox-PBC binding sites play an instructive role in Hox specificity by promoting the formation of different Hox-PBC heterodimers in vivo. Thus, the choice of Hox partner, and therefore Hox target genes, depends on subtle differences between Hox-PBC binding sites.


Sign in / Sign up

Export Citation Format

Share Document