scholarly journals A tetratricopeptide repeat mutation in yeast transcription factor IIIC131 (TFIIIC131) facilitates recruitment of TFIIB-related factor TFIIIB70.

1997 ◽  
Vol 17 (12) ◽  
pp. 7119-7125 ◽  
Author(s):  
R D Moir ◽  
I Sethy-Coraci ◽  
K Puglia ◽  
M D Librizzi ◽  
I M Willis

Transcription factor IIIC (TFIIIC) plays an important role in assembling the initiation factor TFIIIB on genes transcribed by RNA polymerase III (Pol III). In Saccharomyces cerevisiae, assembly of the TFIIIB complex by promoter-bound TFIIIC is thought to be initiated by its tetratricopeptide repeat (TPR)-containing subunit, TFIIIC131, which interacts directly with the TFIIB-related factor, TFIIIB70/Brf1. In this work, we have identified 10 dominant mutations in TFIIIC131 that increase Pol III gene transcription. All of these mutations are found within a discrete 53-amino-acid region of the protein encompassing TPR2. Biochemical studies of one of the mutations (PCF1-2) show that the increase in transcription is due to an increase in the recruitment of TFIIIB70 to TFIIC-DNA. The PCF1-2 mutation does not affect the affinity of TFIIIC for DNA, and the differential in both transcription and TFIIIB complex assembly is observed at saturating levels of TFIIIB70. This indicates that mutant and wild-type TFIIIC-DNA complexes have the same affinity for TFIIIB70 and suggests that the increased recruitment of this factor is achieved by a nonequilibrium binding mechanism. A novel mechanism of activation in which the TPR mutations facilitate a conformational change in TFIIIC that is required for TFIIIB70 binding is proposed. The implications of this model for the regulation of processes involving TPR proteins are discussed.

2002 ◽  
Vol 22 (17) ◽  
pp. 6131-6141 ◽  
Author(s):  
Robyn D. Moir ◽  
Karen V. Puglia ◽  
Ian M. Willis

ABSTRACT The interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC, TFIIIC131, and the TFIIB-related factor Brf1 represents a limiting step in the assembly of the RNA polymerase III (pol III) initiation factor TFIIIB. This assembly reaction is facilitated by dominant mutations that map in and around TPR2. Structural modeling of TPR1 to TPR3 from TFIIIC131 shows that one such mutation, PCF1-2, alters a residue in the ligand-binding groove of the TPR superhelix whereas another mutation, PCF1-1, changes a surface-accessible residue on the back side of the TPR superhelix. In this work, we show that the PCF1-1 mutation (H190Y) increases the binding affinity for Brf1, but does not affect the binding affinity for Bdp1, in the TFIIIC-dependent assembly of TFIIIB. Interestingly, binding studies with TFIIIC131 fragments indicate that Brf1 does not interact directly at the site of the PCF1-1 mutation. Rather, the data suggest that the mutation overcomes the previously documented autoinhibition of Brf1 binding. These findings together with the results from site-directed mutagenesis support the hypothesis that gain-of-function mutations at amino acid 190 in TPR2 stabilize an alternative conformation of TFIIIC131 that promotes its interaction with Brf1.


Parasitology ◽  
2015 ◽  
Vol 142 (13) ◽  
pp. 1563-1573 ◽  
Author(s):  
D. E. VÉLEZ-RAMÍREZ ◽  
L. E. FLORENCIO-MARTÍNEZ ◽  
G. ROMERO-MEZA ◽  
S. ROJAS-SÁNCHEZ ◽  
R. MORENO-CAMPOS ◽  
...  

SUMMARYRNA polymerase III (Pol III) synthesizes small RNA molecules that are essential for cell viability. Accurate initiation of transcription by Pol III requires general transcription factor TFIIIB, which is composed of three subunits: TFIIB-related factor BRF1, TATA-binding protein and BDP1. Here we report the molecular characterization of BRF1 in Trypanosoma brucei (TbBRF1), a parasitic protozoa that shows distinctive transcription characteristics. In silico analysis allowed the detection in TbBRF1 of the three conserved domains located in the N-terminal region of all BRF1 orthologues, namely a zinc ribbon motif and two cyclin repeats. Homology modelling suggested that, similarly to other BRF1 and TFIIB proteins, the TbBRF1 cyclin repeats show the characteristic structure of five α-helices per repeat, connected by a short random-coiled linker. As expected for a transcription factor, TbBRF1 was localized in the nucleus. Knock-down of TbBRF1 by RNA interference (RNAi) showed that this protein is essential for the viability of procyclic forms of T. brucei, since ablation of TbBRF1 led to growth arrest of the parasites. Nuclear run-on and quantitative real-time PCR analyses demonstrated that transcription of all the Pol III-dependent genes analysed was reduced, at different levels, after RNAi induction.


1998 ◽  
Vol 95 (16) ◽  
pp. 9196-9201 ◽  
Author(s):  
George A. Kassavetis ◽  
Ashok Kumar ◽  
Garth A. Letts ◽  
E. Peter Geiduschek

Transcription factor (TF) IIIB, which directs RNA polymerase (pol) III to its promoters, is made up of three components: the TATA box-binding protein, the TFIIB-related Brf, and the pol III-specific B′′. Certain mutations in Saccharomyces cerevisiae Brf and B′′ retain TFIIIB transcription factor activity with supercoiled DNA but are inactive with linear duplex DNA. Further analysis shows that these inactive TFIIIB–DNA complexes bind pol III and position it appropriately over the transcriptional start site but do not form DNA strand-separated open promoter complexes. It is proposed that the normal function of TFIIIB combines pol III recruitment with an active role in a subsequent step of transcriptional initiation leading to promoter opening.


2020 ◽  
Vol 295 (14) ◽  
pp. 4617-4630
Author(s):  
Feixia Peng ◽  
Ying Zhou ◽  
Juan Wang ◽  
Baoqiang Guo ◽  
Yun Wei ◽  
...  

Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III–mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box–binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III–directed transcription and shed light on how Sp1 regulates cancer cell proliferation.


2015 ◽  
Vol 35 (10) ◽  
pp. 1848-1859 ◽  
Author(s):  
Damian Graczyk ◽  
Robert J. White ◽  
Kevin M. Ryan

Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.


1996 ◽  
Vol 16 (11) ◽  
pp. 6468-6476 ◽  
Author(s):  
S A Shaaban ◽  
E V Bobkova ◽  
D M Chudzik ◽  
B D Hall

We have studied the in vitro elongation and termination properties of several yeast RNA polymerase III (pol III) mutant enzymes that have altered in vivo termination behavior (S. A. Shaaban, B. M. Krupp, and B. D. Hall, Mol. Cell. Biol. 15:1467-1478, 1995). The pattern of completed-transcript release was also characterized for three of the mutant enzymes. The mutations studied occupy amino acid regions 300 to 325, 455 to 521, and 1061 to 1082 of the RET1 protein (P. James, S. Whelen, and B. D. Hall, J. Biol. Chem. 266:5616-5624, 1991), the second largest subunit of yeast RNA pol III. In general, mutant enzymes which have increased termination require a longer time to traverse a template gene than does wild-type pol III; the converse holds true for most decreased-termination mutants. One increased-termination mutant (K310T I324K) was faster and two reduced termination mutants (K512N and T455I E478K) were slower than the wild-type enzyme. In most cases, these changes in overall elongation kinetics can be accounted for by a correspondingly longer or shorter dwell time at pause sites within the SUP4 tRNA(Tyr) gene. Of the three mutants analyzed for RNA release, one (T455I) was similar to the wild type while the two others (T455I E478K and E478K) bound the completed SUP4 pre-tRNA more avidly. The results of this study support the view that termination is a multistep pathway in which several different regions of the RET1 protein are actively involved. Region 300 to 325 likely affects a step involved in RNA release, while the Rif homology region, amino acids 455 to 521, interacts with the nascent RNA 3' end. The dual effects of several mutations on both elongation kinetics and RNA release suggest that the protein motifs affected by them have multiple roles in the steps leading to transcription termination.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3727-3736 ◽  
Author(s):  
R. Hays ◽  
G.B. Gibori ◽  
A. Bejsovec

wingless (wg) and its vertebrate homologues, the Wnt genes, play critical roles in the generation of embryonic pattern. In the developing Drosophila epidermis, wg is expressed in a single row of cells in each segment, but it influences cell identities in all rows of epidermal cells in the 10- to 12-cell-wide segment. Wg signaling promotes specification of two distinct aspects of the wild-type intrasegmental pattern: the diversity of denticle types present in the anterior denticle belt and the smooth or naked cuticle constituting the posterior surface of the segment. We have manipulated the expression of wild-type and mutant wg transgenes to explore the mechanism by which a single secreted signaling molecule can promote these distinctly different cell fates. We present evidence consistent with the idea that naked cuticle cell fate is specified by a cellular pathway distinct from the denticle diversity-generating pathway. Since these pathways are differentially activated by mutant Wg ligands, we propose that at least two discrete classes of receptor for Wg may exist, each transducing a different cellular response. We also find that broad Wg protein distribution across many cell diameters is required for the generation of denticle diversity, suggesting that intercellular transport of the Wg protein is an essential feature of pattern formation within the epidermal epithelium. Finally, we demonstrate that an 85 amino acid region not conserved in vertebrate Wnts is dispensable for Wg function and we discuss structural features of the Wingless protein required for its distinct biological activities.


2020 ◽  
Vol 40 (12) ◽  
Author(s):  
Mun Kyoung Kim ◽  
An Tranvo ◽  
Ann Marie Hurlburt ◽  
Neha Verma ◽  
Phuc Phan ◽  
...  

ABSTRACT U6 snRNA is transcribed by RNA polymerase III (Pol III) and has an external upstream promoter that consists of a TATA sequence recognized by the TBP subunit of the Pol III basal transcription factor IIIB and a proximal sequence element (PSE) recognized by the small nuclear RNA activating protein complex (SNAPc). Previously, we found that Drosophila melanogaster SNAPc (DmSNAPc) bound to the U6 PSE can recruit the Pol III general transcription factor Bdp1 to form a stable complex with the DNA. Here, we show that DmSNAPc-Bdp1 can recruit TBP to the U6 promoter, and we identify a region of Bdp1 that is sufficient for TBP recruitment. Moreover, we find that this same region of Bdp1 cross-links to nucleotides within the U6 PSE at positions that also cross-link to DmSNAPc. Finally, cross-linking mass spectrometry reveals likely interactions of specific DmSNAPc subunits with Bdp1 and TBP. These data, together with previous findings, have allowed us to build a more comprehensive model of the DmSNAPc-Bdp1-TBP complex on the U6 promoter that includes nearly all of DmSNAPc, a portion of Bdp1, and the conserved region of TBP.


2003 ◽  
Vol 2 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Liping Wu ◽  
Jing Pan ◽  
Vala Thoroddsen ◽  
Deborah R. Wysong ◽  
Ronald K. Blackman ◽  
...  

ABSTRACT A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


1997 ◽  
Vol 17 (10) ◽  
pp. 5823-5832 ◽  
Author(s):  
J L Goodier ◽  
H Fan ◽  
R J Maraia

Human La protein has been shown to serve as a transcription factor for RNA polymerase III (pol III) by facilitating transcription termination and recycling of transcription complexes. In addition, La binds to the 3' oligo(U) ends common to all nascent pol III transcripts, and in the case of B1-Alu RNA, protects it from 3'-end processing (R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Others have previously dissected the La protein into an N-terminal domain that binds RNA and a C-terminal domain that does not. Here, deletion and substitution mutants of La were examined for general RNA binding, RNA 3'-end protection, and transcription factor activity. Although some La mutants altered in a C-terminal basic region bind RNA in mobility shift assays, they are defective in RNA 3'-end protection and do not support transcription, while one C-terminal substitution mutant is defective only in transcription. Moreover, a C-terminal fragment lacking RNA binding activity appears able to support low levels of transcription by pol III. While efficient multiround transcription is supported only by mutants that bind RNA and contain a C-terminal basic region. These analyses indicate that RNA binding contributes to but is not sufficient for La transcription factor activity and that the C-terminal domain plays a role in transcription that is distinguishable from simple RNA binding. The transcription factor activity of La can be reversibly inhibited by RNA, suggesting the potential for feedback inhibition of pol III transcription.


Sign in / Sign up

Export Citation Format

Share Document