scholarly journals GATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression

1998 ◽  
Vol 18 (6) ◽  
pp. 3405-3415 ◽  
Author(s):  
Jorge L. Sepulveda ◽  
Narashimaswamy Belaguli ◽  
Vishal Nigam ◽  
Ching-Yi Chen ◽  
Mona Nemer ◽  
...  

ABSTRACT The cardiogenic homeodomain factor Nkx-2.5 and serum response factor (SRF) provide strong transcriptional coactivation of the cardiac α-actin (αCA) promoter in fibroblasts (C. Y. Chen and R. J. Schwartz, Mol. Cell. Biol. 16:6372–6384, 1996). We demonstrate here that Nkx-2.5 also cooperates with GATA-4, a dual C-4 zinc finger transcription factor expressed in early cardiac progenitor cells, to activate the αCA promoter and a minimal promoter, containing only multimerized Nkx-2.5 DNA binding sites (NKEs), in heterologous CV-1 fibroblasts. Transcriptional activity requires the N-terminal activation domain of Nkx-2.5 and Nkx-2.5 binding activity through its homeodomain but does not require GATA-4’s activation domain. The minimal interactive regions were mapped to the homeodomain of Nkx-2.5 and the second zinc finger of GATA-4. Removal of Nkx-2.5’s C-terminal inhibitory domain stimulated robust transcriptional activity, comparable to the effects of GATA-4 on wild-type Nkx-2.5, which in part facilitated Nkx-2.5 DNA binding activity. We postulate the following simple model: GATA-4 induces a conformational change in Nkx-2.5 that displaces the C-terminal inhibitory domain, thus eliciting transcriptional activation of promoters containing Nkx-2.5 DNA binding targets. Therefore, αCa promoter activity appears to be regulated through the combinatorial interactions of at least three cardiac tissue-enriched transcription factors, Nkx-2.5, GATA-4, and SRF.

2021 ◽  
Author(s):  
Leah M. Williams ◽  
Sainetra Sridhar ◽  
Jason Samaroo ◽  
Ebubechi K. Adindu ◽  
Anvitha Addanki ◽  
...  

In this report, we investigate the evolution of transcription factor NF-κB by examining its structure, activity, and regulation in two protists using phylogenetic, cellular, and biochemical techniques. In Capsaspora owczarzaki (Co), we find that full-length NF-κB has an N-terminal DNA-binding domain and a C-terminal Ankyrin (ANK) repeat inhibitory domain, and its DNA-binding activity is more similar to metazoan NF-κB rather than Rel proteins. As with mammalian NF-κB proteins, removal of the ANK repeats is required for Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by co-expression of IKK in human cells. Exogenously expressed Co-NF-κB localizes to the nucleus in Co cells. NF-κB mRNA and DNA-binding levels differ across three life stages of Capsaspora, suggesting distinct roles for NF-κB in these life stages. RNA-seq and GO analyses identify possible gene targets and biological functions of Co-NF-κB. We also show that three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) all consist of primarily the N-terminal conserved Rel Homology domain sequences of NF-κB, and lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of human and Co cells, but differ in their DNA-binding and transcriptional activation activities. Furthermore, all three As-NF-κB proteins can form heterodimers, indicating that NF-κB diversified into multi-subunit families at least two times during evolution. Overall, these results present the first functional characterization of NF-κB in a taxonomic kingdom other than Animalia and provide information about the evolution and diversification of this biologically important transcription factor.


1999 ◽  
Vol 19 (2) ◽  
pp. 1508-1517 ◽  
Author(s):  
Yibing Qyang ◽  
Xu Luo ◽  
Tao Lu ◽  
Preeti M. Ismail ◽  
Dmitry Krylov ◽  
...  

ABSTRACT USF1 and USF2 are basic helix-loop-helix transcription factors implicated in the control of cellular proliferation. In HeLa cells, the USF proteins are transcriptionally active and their overexpression causes marked growth inhibition. In contrast, USF overexpression had essentially no effect on the proliferation of the Saos-2 osteosarcoma cell line. USF1 and USF2 also lacked transcriptional activity in Saos-2 cells when assayed by transient cotransfection with USF-dependent reporter genes. Yet, there was no difference in the expression, subcellular localization, or DNA-binding activity of the USF proteins in HeLa and Saos-2 cells. Furthermore, Gal4-USF1 and Gal4-USF2 fusion proteins activated transcription similarly in both cell lines. Mutational analysis and domain swapping experiments revealed that the small, highly conserved USF-specific region (USR) was responsible for the inactivity of USF in Saos-2 cells. In HeLa, the USR serves a dual function. It acts as an autonomous transcriptional activation domain at promoters containing an initiator element and also induces a conformational change that is required for USF activity at promoters lacking an initiator. Taken together, these results suggest a model in which the transcriptional activity of the USF proteins, and consequently their antiproliferative activity, is tightly controlled by interaction with a specialized coactivator that recognizes the conserved USR domain and, in contrast to USF, is not ubiquitous. The activity of USF is therefore context dependent, and evidence for USF DNA-binding activity in particular cells is insufficient to indicate USF function in transcriptional activation and growth control.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 613-613 ◽  
Author(s):  
Christopher B. Miller ◽  
Charles G. Mullighan ◽  
James R. Downing

Abstract Using genome-wide profiling of DNA copy number abnormalities using high-resolution single nucleotide polymorphism arrays, we recently identified a high frequency of genomic aberrations involving the PAX5 gene in pediatric B-progenitor ALL. PAX5 is a critical transcriptional regulator of B lymphocyte commitment and differentiation. Mutations, including partial tandem duplication, complete and focal deletions, point mutations in the DNA-binding or transactivation domain, and three translocations that encode PAX5 fusion proteins were observed in 31.7% of B-ALL. The PAX5 deletions were mono-allelic and resulted in either loss of the entire gene, or the deletion of only a subset of the exons leading to the production of PAX5 proteins that lacked the DNA-binding paired domain (exons 2–4) and/or the transcriptional activation domain (exons 7–10). In murine systems, the complete absence of PAX5 results in the arrest of B-cell development at the pro-B-cell stage prior to immunoglobulin heavy chain rearrangement, whereas haploinsufficiency leads to a partial block in B-cell development. Importantly, in the primary leukemia samples, the mono-allelic loss of PAX5 was associated with reduced expression of PAX5 by flow cytometry and quantitative RT-PCR, suggesting that haploinsufficiency contributes to the block in differentiation characteristic of B-progenitor ALL. To determine if the other identified PAX5 mutations result in hypomorphic alleles, we analyzed the DNA-binding and transcriptional activity of the encoded proteins. DNA-binding activity was assessed by electrophoretic mobility gel-shift assays using a labeled oligonucleotide probes from the promoters of the PAX5 target genes CD19 and CD79A (mb-1), and transcriptional activity was assessed by a luciferase-based reporter assays using the PAX5-dependent reporter plasmid, luc-CD19. Analysis was performed on the paired-domain mutants P80R and P34Q, the focal deletions Δe2-5, Δe2-6, Δe2-7, Δe2-8, and Δe6-8, and the PAX5-ETV6 and PAX5-FOXP1 translocation-encoded fusion proteins. As expected, DNA-binding was abrogated in deletion mutants that lacked the paired domain (Δe2-5, Δe2-6, Δe2-7, Δe2-8). In contrast, the PAX5 Δe6-8, which retains the paired DNA binding domain but lacks a significant portion of the transcriptional regulatory domain, had normal DNA binding activity. Importantly, the paired domain point mutants impaired DNA-binding in a promoter specific manner, with P80R having a marked reduction in binding to both the CD19 and mb-1 promoters, whereas P34Q showed reduced binding only to the mb-1 promoter. Surprisingly, the PAX5-ETV6 and the PAX5-FOXP1 translocations had markedly reduced DNA-binding activity despite retention of the PAX5 paired domain. As expected each of the mutants with impaired or absent DNA-binding activity were found to have markedly reduced transcriptional activity when compared to wild type PAX5. Similarly, those mutants with altered or deleted transcriptional activation domains had reduced transcriptional activity, as did the two PAX5 translocation-encoded fusion proteins (PAX5-ETV6 and PAX5-FOXP1). Moreover, transfection of increasing amounts of PAX5-ETV6 or PAX5-FOXP1 together with a fixed amount of wild type PAX5 revealed that the fusion proteins competitively inhibit the transcriptional activation of wild type PAX5. Taken together, these data indicate that the identified PAX5 mutations impair DNA-binding and/or transcriptional activity. This loss of normal PAX5 function in turn would contribute to the observed arrest in B-cell development seen in ALL.


2007 ◽  
Vol 282 (50) ◽  
pp. 36603-36613 ◽  
Author(s):  
Marc A. Holbert ◽  
Timothy Sikorski ◽  
Juliana Carten ◽  
Danielle Snowflack ◽  
Santosh Hodawadekar ◽  
...  

2001 ◽  
Vol 29 (6) ◽  
pp. 688-691 ◽  
Author(s):  
K. J. Campbell ◽  
N. R. Chapman ◽  
N. D. Perkins

The cellular response to DNA-damaging agents is partly mediated by DNA-binding transcription factors such as p53 and nuclear factor κB (NF-κB). Typically NF-κB activation is associated with resistance to apoptosis. Following stimulation with UV light however, NF-κB activation has been shown to be required for programmed cell death. To study this effect further and to determine the relationship between NF-κB and p53 function, we have examined the effect of UV light on U2OS cells. UV stimulation resulted in the activation of NF-κB DNA-binding and the induction of p53. Surprisingly, and in contrast with tumour necrosis factor α stimulation, this UV-induced NF-κB was transcriptionally inert. These observations suggest a model in which the NF-κB switch from an anti-apoptotic to a pro-apoptotic role within the cell results from modulation of its ability to stimulate gene expression, possibly as a result of the ability of p53 to sequester transcriptional co-activator proteins such as p300/CREB (cAMP-response-element-binding protein)-binding protein.


Biochemistry ◽  
2010 ◽  
Vol 49 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Jennifer Grants ◽  
Erin Flanagan ◽  
Andrea Yee ◽  
Paul J. Romaniuk

1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1990 ◽  
Vol 10 (3) ◽  
pp. 1259-1264 ◽  
Author(s):  
T Matsugi ◽  
K Morishita ◽  
J N Ihle

Activation of the Evi-1 zinc finger gene is a common event associated with transformation of murine myeloid leukemias. To characterize the gene product, we developed antisera against various protein domains. These antisera primarily detected a 145-kilodalton nuclear protein that bound double-stranded DNA. Binding was inhibited by chelating agents and partially restored by zinc ions.


Sign in / Sign up

Export Citation Format

Share Document