scholarly journals Cell-Type-Dependent Activity of the Ubiquitous Transcription Factor USF in Cellular Proliferation and Transcriptional Activation

1999 ◽  
Vol 19 (2) ◽  
pp. 1508-1517 ◽  
Author(s):  
Yibing Qyang ◽  
Xu Luo ◽  
Tao Lu ◽  
Preeti M. Ismail ◽  
Dmitry Krylov ◽  
...  

ABSTRACT USF1 and USF2 are basic helix-loop-helix transcription factors implicated in the control of cellular proliferation. In HeLa cells, the USF proteins are transcriptionally active and their overexpression causes marked growth inhibition. In contrast, USF overexpression had essentially no effect on the proliferation of the Saos-2 osteosarcoma cell line. USF1 and USF2 also lacked transcriptional activity in Saos-2 cells when assayed by transient cotransfection with USF-dependent reporter genes. Yet, there was no difference in the expression, subcellular localization, or DNA-binding activity of the USF proteins in HeLa and Saos-2 cells. Furthermore, Gal4-USF1 and Gal4-USF2 fusion proteins activated transcription similarly in both cell lines. Mutational analysis and domain swapping experiments revealed that the small, highly conserved USF-specific region (USR) was responsible for the inactivity of USF in Saos-2 cells. In HeLa, the USR serves a dual function. It acts as an autonomous transcriptional activation domain at promoters containing an initiator element and also induces a conformational change that is required for USF activity at promoters lacking an initiator. Taken together, these results suggest a model in which the transcriptional activity of the USF proteins, and consequently their antiproliferative activity, is tightly controlled by interaction with a specialized coactivator that recognizes the conserved USR domain and, in contrast to USF, is not ubiquitous. The activity of USF is therefore context dependent, and evidence for USF DNA-binding activity in particular cells is insufficient to indicate USF function in transcriptional activation and growth control.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 613-613 ◽  
Author(s):  
Christopher B. Miller ◽  
Charles G. Mullighan ◽  
James R. Downing

Abstract Using genome-wide profiling of DNA copy number abnormalities using high-resolution single nucleotide polymorphism arrays, we recently identified a high frequency of genomic aberrations involving the PAX5 gene in pediatric B-progenitor ALL. PAX5 is a critical transcriptional regulator of B lymphocyte commitment and differentiation. Mutations, including partial tandem duplication, complete and focal deletions, point mutations in the DNA-binding or transactivation domain, and three translocations that encode PAX5 fusion proteins were observed in 31.7% of B-ALL. The PAX5 deletions were mono-allelic and resulted in either loss of the entire gene, or the deletion of only a subset of the exons leading to the production of PAX5 proteins that lacked the DNA-binding paired domain (exons 2–4) and/or the transcriptional activation domain (exons 7–10). In murine systems, the complete absence of PAX5 results in the arrest of B-cell development at the pro-B-cell stage prior to immunoglobulin heavy chain rearrangement, whereas haploinsufficiency leads to a partial block in B-cell development. Importantly, in the primary leukemia samples, the mono-allelic loss of PAX5 was associated with reduced expression of PAX5 by flow cytometry and quantitative RT-PCR, suggesting that haploinsufficiency contributes to the block in differentiation characteristic of B-progenitor ALL. To determine if the other identified PAX5 mutations result in hypomorphic alleles, we analyzed the DNA-binding and transcriptional activity of the encoded proteins. DNA-binding activity was assessed by electrophoretic mobility gel-shift assays using a labeled oligonucleotide probes from the promoters of the PAX5 target genes CD19 and CD79A (mb-1), and transcriptional activity was assessed by a luciferase-based reporter assays using the PAX5-dependent reporter plasmid, luc-CD19. Analysis was performed on the paired-domain mutants P80R and P34Q, the focal deletions Δe2-5, Δe2-6, Δe2-7, Δe2-8, and Δe6-8, and the PAX5-ETV6 and PAX5-FOXP1 translocation-encoded fusion proteins. As expected, DNA-binding was abrogated in deletion mutants that lacked the paired domain (Δe2-5, Δe2-6, Δe2-7, Δe2-8). In contrast, the PAX5 Δe6-8, which retains the paired DNA binding domain but lacks a significant portion of the transcriptional regulatory domain, had normal DNA binding activity. Importantly, the paired domain point mutants impaired DNA-binding in a promoter specific manner, with P80R having a marked reduction in binding to both the CD19 and mb-1 promoters, whereas P34Q showed reduced binding only to the mb-1 promoter. Surprisingly, the PAX5-ETV6 and the PAX5-FOXP1 translocations had markedly reduced DNA-binding activity despite retention of the PAX5 paired domain. As expected each of the mutants with impaired or absent DNA-binding activity were found to have markedly reduced transcriptional activity when compared to wild type PAX5. Similarly, those mutants with altered or deleted transcriptional activation domains had reduced transcriptional activity, as did the two PAX5 translocation-encoded fusion proteins (PAX5-ETV6 and PAX5-FOXP1). Moreover, transfection of increasing amounts of PAX5-ETV6 or PAX5-FOXP1 together with a fixed amount of wild type PAX5 revealed that the fusion proteins competitively inhibit the transcriptional activation of wild type PAX5. Taken together, these data indicate that the identified PAX5 mutations impair DNA-binding and/or transcriptional activity. This loss of normal PAX5 function in turn would contribute to the observed arrest in B-cell development seen in ALL.


1998 ◽  
Vol 18 (6) ◽  
pp. 3405-3415 ◽  
Author(s):  
Jorge L. Sepulveda ◽  
Narashimaswamy Belaguli ◽  
Vishal Nigam ◽  
Ching-Yi Chen ◽  
Mona Nemer ◽  
...  

ABSTRACT The cardiogenic homeodomain factor Nkx-2.5 and serum response factor (SRF) provide strong transcriptional coactivation of the cardiac α-actin (αCA) promoter in fibroblasts (C. Y. Chen and R. J. Schwartz, Mol. Cell. Biol. 16:6372–6384, 1996). We demonstrate here that Nkx-2.5 also cooperates with GATA-4, a dual C-4 zinc finger transcription factor expressed in early cardiac progenitor cells, to activate the αCA promoter and a minimal promoter, containing only multimerized Nkx-2.5 DNA binding sites (NKEs), in heterologous CV-1 fibroblasts. Transcriptional activity requires the N-terminal activation domain of Nkx-2.5 and Nkx-2.5 binding activity through its homeodomain but does not require GATA-4’s activation domain. The minimal interactive regions were mapped to the homeodomain of Nkx-2.5 and the second zinc finger of GATA-4. Removal of Nkx-2.5’s C-terminal inhibitory domain stimulated robust transcriptional activity, comparable to the effects of GATA-4 on wild-type Nkx-2.5, which in part facilitated Nkx-2.5 DNA binding activity. We postulate the following simple model: GATA-4 induces a conformational change in Nkx-2.5 that displaces the C-terminal inhibitory domain, thus eliciting transcriptional activation of promoters containing Nkx-2.5 DNA binding targets. Therefore, αCa promoter activity appears to be regulated through the combinatorial interactions of at least three cardiac tissue-enriched transcription factors, Nkx-2.5, GATA-4, and SRF.


2001 ◽  
Vol 29 (6) ◽  
pp. 688-691 ◽  
Author(s):  
K. J. Campbell ◽  
N. R. Chapman ◽  
N. D. Perkins

The cellular response to DNA-damaging agents is partly mediated by DNA-binding transcription factors such as p53 and nuclear factor κB (NF-κB). Typically NF-κB activation is associated with resistance to apoptosis. Following stimulation with UV light however, NF-κB activation has been shown to be required for programmed cell death. To study this effect further and to determine the relationship between NF-κB and p53 function, we have examined the effect of UV light on U2OS cells. UV stimulation resulted in the activation of NF-κB DNA-binding and the induction of p53. Surprisingly, and in contrast with tumour necrosis factor α stimulation, this UV-induced NF-κB was transcriptionally inert. These observations suggest a model in which the NF-κB switch from an anti-apoptotic to a pro-apoptotic role within the cell results from modulation of its ability to stimulate gene expression, possibly as a result of the ability of p53 to sequester transcriptional co-activator proteins such as p300/CREB (cAMP-response-element-binding protein)-binding protein.


1996 ◽  
Vol 271 (4) ◽  
pp. C1172-C1180 ◽  
Author(s):  
B. H. Jiang ◽  
G. L. Semenza ◽  
C. Bauer ◽  
H. H. Marti

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein implicated in the transcriptional activation of genes encoding erythropoietin, glycolytic enzymes, and vascular endothelial growth factor in hypoxic mammalian cells. In this study, we have quantitated HIF-1 DNA-binding activity and protein levels of the HIF-1 alpha and HIF-1 beta subunits in human HeLa cells exposed to O2 concentrations ranging from 0 to 20% in the absence or presence of 1 mM KCN to inhibit oxidative phosphorylation and cellular O2 consumption. HIF-1 DNA-binding activity, HIF-1 alpha protein and HIF-1 beta protein each increased exponentially as cells were subjected to decreasing O2 concentrations, with a half maximal response between 1.5 and 2% O2 and a maximal response at 0.5% O2, both in the presence and absence of KCN. The HIF-1 response was greatest over O2 concentrations associated with ischemic/hypoxic events in vivo. These results provide evidence for the involvement of HIF-1 in O2 homeostasis and represent a functional characterization of the putative O2 sensor that initiates hypoxia signal transduction leading to HIF-1 expression.


1995 ◽  
Vol 15 (10) ◽  
pp. 5552-5562 ◽  
Author(s):  
E Roulet ◽  
M T Armentero ◽  
G Krey ◽  
B Corthésy ◽  
C Dreyer ◽  
...  

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.


1991 ◽  
Vol 11 (9) ◽  
pp. 4356-4362 ◽  
Author(s):  
M N Kanaan ◽  
G A Marzluf

cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.


1996 ◽  
Vol 16 (9) ◽  
pp. 4639-4647 ◽  
Author(s):  
S J McBryant ◽  
E Meier ◽  
A Leresche ◽  
S J Sharp ◽  
V J Wolf ◽  
...  

The RNA polymerase III transcription initiation factor TFIIIB contains the TATA-box-binding protein (TBP) and polymerase III-specific TBP-associated factors (TAFs). Previous studies have shown that DNA oligonucleotides containing the consensus TATA-box sequence inhibit polymerase III transcription, implying that the DNA binding domain of TBP is exposed in TFIIIB. We have investigated the TATA-box DNA binding activity of Xenopus TFIIIB, using transcription inhibition assays and a gel mobility shift assay. Gel shift competition assays with mutant and nonspecific DNAs demonstrate the specificity of the TFIIIB-TATA box DNA complex. The apparent dissociation constant for this protein-DNA interaction is approximately 0.4 nM, similar to the affinity of yeast TBP for the same sequence. TFIIIB transcriptional activity and TATA-box binding activity cofractionate during a series of four ion-exchange chromatographic steps, and reconstituted transcription reactions demonstrate that the TATA-box DNA-protein complex contains TFIIIB TAF activity. Polypeptides with apparent molecular masses of 75 and 92 kDa are associated with TBP in this complex. These polypeptides were renatured after elution from sodium dodecyl sulfate-gels and tested individually and in combination for TFIIIB TAF activity. Recombinant TBP along with protein fractions containing the 75- and 92-kDa polypeptides were sufficient to reconstitute TFIIIB transcriptional activity and DNA binding activity, suggesting that Xenopus TFIIIB is composed of TBP along with these polypeptides.


Sign in / Sign up

Export Citation Format

Share Document