scholarly journals A Nuclear 3′-5′ Exonuclease Involved in mRNA Degradation Interacts with Poly(A) Polymerase and the hnRNA Protein Npl3p

2000 ◽  
Vol 20 (2) ◽  
pp. 604-616 ◽  
Author(s):  
Karina T. D. Burkard ◽  
J. Scott Butler

ABSTRACT Inactivation of poly(A) polymerase (encoded by PAP1) inSaccharomyces cerevisiae cells carrying the temperature-sensitive, lethal pap1-1 mutation results in reduced levels of poly(A)+ mRNAs. Genetic selection for suppressors of pap1-1 yielded two recessive, cold-sensitive alleles of the gene RRP6. These suppressors,rrp6-1 and rrp6-2, as well as a deletion ofRRP6, allow growth of pap1-1 strains at high temperature and partially restore the levels of poly(A)+mRNA in a manner distinct from the cytoplasmic mRNA turnover pathway and without slowing a rate-limiting step in mRNA decay. Subcellular localization of an Rrp6p-green fluorescent protein fusion shows that the enzyme residues in the nucleus. Phylogenetic analysis and the nature of the rrp6-1 mutation suggest the existence of a highly conserved 3′-5′ exonuclease core domain within Rrp6p. As predicted, recombinant Rrp6p catalyzes the hydrolysis of a synthetic radiolabeled RNA in a manner consistent with a 3′-5′ exonucleolytic mechanism. Genetic and biochemical experiments indicate that Rrp6p interacts with poly(A) polymerase and with Npl3p, a poly(A)+ mRNA binding protein implicated in pre-mRNA processing and mRNA nuclear export. These findings suggest that Rrp6p may interact with the mRNA polyadenylation system and thereby play a role in a nuclear pathway for the degradation of aberrantly processed precursor mRNAs.

1997 ◽  
Vol 17 (9) ◽  
pp. 5001-5015 ◽  
Author(s):  
N I Zanchin ◽  
P Roberts ◽  
A DeSilva ◽  
F Sherman ◽  
D S Goldfarb

The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells.


2000 ◽  
Vol 11 (10) ◽  
pp. 3629-3643 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Daphne Chapman-Shimshoni ◽  
Selena Trajkovic ◽  
Jeffrey E. Gerst

In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1(SNC1ala43), are deficient in the endocytic uptake of components from the cell surface. We found that bothSNC and temperature-shiftedSNC1ala43yeast are deficient in their ability to deliver the soluble dye FM4–64 to the vacuole. Under conditions in which vesicles accumulate, FM4–64 stained primarily the cytoplasm as well as fragmented vacuoles. In addition, α-factor–stimulated endocytosis of the α-factor receptor, Ste2, was fully blocked, as evidenced using a Ste2-green fluorescent protein fusion protein as well as metabolic labeling studies. This suggests a direct role for Snc v-SNAREs in the retrieval of membrane proteins from the cell surface. Moreover, this idea is supported by genetic and physical data that demonstrate functional interactions with t-SNAREs that confer endosomal transport (e.g., Tlg1,2). Notably, Snc1ala43was found to be nonfunctional in cells lacking Tlg1 or Tlg2. Thus, we propose that synaptobrevin/VAMP family members are engaged in anterograde and retrograde protein sorting steps between the Golgi and the plasma membrane.


2007 ◽  
Vol 6 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Christiane Rollenhagen ◽  
Christine A. Hodge ◽  
Charles N. Cole

ABSTRACT Heat shock leads to accumulation of polyadenylated RNA in nuclei of Saccharomyces cerevisiae cells, transcriptional induction of heat shock genes, and efficient export of polyadenylated heat shock mRNAs. These studies were conducted to examine the requirements for export of mRNA following heat shock. We used in situ hybridization to detect SSA4 mRNA (encoding Hsp70) and flow cytometry to measure the amount of Ssa4p-green fluorescent protein (GFP) produced following heat shock. Npl3p and Yra1p are mRNA-binding proteins recruited to nascent mRNAs and are essential for proper mRNA biogenesis and export. Heat shock mRNA was exported efficiently in temperature-sensitive npl3, yra1, and npl3 yra1 mutant strains. Nevertheless, Yra1p was recruited to heat shock mRNA, as were Nab2p and Npl3p. Interestingly, Yra1p was not recruited to heat shock mRNA in yra1-1 cells, suggesting that Npl3p is required for recruitment of Yra1p. The THO complex, which functions in transcription elongation and in recruitment of Yra1p, was not required for heat shock mRNA export, although normal mRNA export is impaired in growing cells lacking THO complex proteins. Taken together, these studies indicate that export following heat shock depends upon fewer factors than does mRNA export in growing cells. Furthermore, even though some mRNA-binding proteins are dispensable for efficient export of heat shock mRNA, those that are present in nuclei of heat shocked cells were recruited to heat shock mRNA.


2000 ◽  
Vol 74 (3) ◽  
pp. 1468-1476 ◽  
Author(s):  
Jung Hee I. Chi ◽  
Duncan W. Wilson

ABSTRACT The herpes simplex virus type 1 (HSV-1) capsid shell is composed of four major polypeptides, VP5, VP19c, VP23, and VP26. VP26, a 12-kDa polypeptide, is associated with the tips of the capsid hexons formed by VP5. Mature capsids form upon angularization of the shell of short-lived, fragile spherical precursors termed procapsids. The cold sensitivity and short-lived nature of the procapsid have made its isolation and biochemical analysis difficult, and it remains unclear whether procapsids contain bound VP26 or whether VP26 is recruited following shell angularization. By indirect immunocytochemical analysis of virally expressed VP26 and by direct visualization of a transiently expressed VP26-green fluorescent protein fusion, we show that VP26 fails to specifically localize to intranuclear procapsids accumulated following incubation of the temperature-sensitive HSV mutanttsProt.A under nonpermissive conditions. However, following a downshift to the permissive temperature, which allows procapsid maturation to proceed, VP26 was seen to concentrate at intranuclear sites which also contained epitopes specific to mature, angularized capsids. Like the formation of these epitopes, the association of VP26 with maturing capsids was blocked in a reversible fashion by the depletion of intracellular ATP. We conclude that unlike the other major capsid shell proteins, VP26 is recruited in an ATP-dependent fashion after procapsid maturation begins.


2000 ◽  
Vol 113 (18) ◽  
pp. 3151-3159 ◽  
Author(s):  
R. Blum ◽  
D.J. Stephens ◽  
I. Schulz

The mechanism by which soluble proteins without sorting motifs are transported to the cell surface is not clear. Here we show that soluble green fluorescent protein (GFP) targeted to the lumen of the endoplasmic reticulum but lacking any known retrieval, retention or targeting motifs, was accumulated in the lumen of the ERGIC if cells were kept at reduced temperature. Upon activation of anterograde transport by rewarming of cells, lumenal GFP stained a microtubule-dependent, pre-Golgi tubulo-vesicular network that served as transport structure between peripheral ERGIC-elements and the perinuclear Golgi complex. Individual examples of these tubular elements up to 20 microm in length were observed. Time lapse imaging indicated rapid anterograde flow of soluble lumenal GFP through this network. Transport tubules, stained by lumenal GFP, segregated rapidly from COPI-positive membranes after transport activation. A transmembrane cargo marker, the temperature sensitive glycoprotein of the vesicular stomatitis virus, ts-045 G, is also not present in tubules which contained the soluble cargo marker lum-GFP. These results suggest a role for pre-Golgi vesicular tubular membranes in long distance anterograde transport of soluble cargo. http://www.biologists.com/JCS/movies/jcs1334.html


2002 ◽  
Vol 22 (20) ◽  
pp. 6931-6945 ◽  
Author(s):  
Ole Morten Seternes ◽  
Bjarne Johansen ◽  
Beate Hegge ◽  
Mona Johannessen ◽  
Stephen M. Keyse ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) pathway is an important mediator of cellular responses to environmental stress. Targets of p38 include transcription factors, components of the translational machinery, and downstream serine/threonine kinases, including MAPK-activated protein kinase 5 (MK5). Here we have used enhanced green fluorescent protein fusion proteins to analyze the subcellular localization of MK5. Although this protein is predominantly nuclear in unstimulated cells, MK5 shuttles between the nucleus and the cytoplasm. Furthermore, we have shown that the C-terminal domain of MK5 contains both a functional nuclear localization signal (NLS) and a leucine-rich nuclear export signal (NES), indicating that the subcellular distribution of this kinase reflects the relative activities of these two signals. In support of this, we have shown that stress-induced activation of the p38 MAPK stimulates the chromosomal region maintenance 1 protein-dependent nuclear export of MK5. This is regulated by both binding of p38 MAPK to MK5, which masks the functional NLS, and stress-induced phosphorylation of MK5 by p38 MAPK, which either activates or unmasks the NES. These properties may define the ability of MK5 to differentially phosphorylate both nuclear and cytoplasmic targets or alternatively reflect a mechanism whereby signals initiated by activation of MK5 in the nucleus may be transmitted to the cytoplasm.


2011 ◽  
Vol 441 (1) ◽  
pp. 209-217 ◽  
Author(s):  
Iraia García-Santisteban ◽  
Sonia Bañuelos ◽  
Jose A. Rodríguez

The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP–USP21 and, to a lesser extent, GFP–OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.


2002 ◽  
Vol 115 (14) ◽  
pp. 2881-2891
Author(s):  
Monika A. Jedrusik ◽  
Stefan Vogt ◽  
Peter Claus ◽  
Ekkehard Schulze

The histone H1 complement of Caenorhabditis elegans contains a single unusual protein, H1.X. Although H1.X possesses the globular domain and the canonical three-domain structure of linker histones, the amino acid composition of H1.X is distinctly different from conventional linker histones in both terminal domains. We have characterized H1.X in C. elegans by antibody labeling, green fluorescent protein fusion protein expression and RNA interference. Unlike normal linker histones, H1.X is a cytoplasmic as well as a nuclear protein and is not associated with chromosomes. H1.X is most prominently expressed in the marginal cells of the pharynx and is associated with a peculiar cytoplasmic cytoskeletal structure therein, the tonofilaments. Additionally H1.X::GFP is expressed in the cytoplasm of body and vulva muscle cells, neurons, excretory cells and in the nucleoli of embryonic blastomeres and adult gut cells. RNA interference with H1.X results in uncoordinated and egg laying defective animals, as well as in a longitudinally enlarged pharynx. These phenotypes indicate a cytoplasmic role of H1.X in muscle growth and muscle function.


2000 ◽  
Vol 113 (15) ◽  
pp. 2679-2683 ◽  
Author(s):  
K. Sugaya ◽  
M. Vigneron ◽  
P.R. Cook

RNA polymerase II is a multi-subunit enzyme responsible for transcription of most eukaryotic genes. It associates with other complexes to form enormous multifunctional ‘holoenzymes’ involved in splicing and polyadenylation. We wished to study these different complexes in living cells, so we generated cell lines expressing the largest, catalytic, subunit of the polymerase tagged with the green fluorescent protein. The tagged enzyme complements a deficiency in tsTM4 cells that have a temperature-sensitive mutation in the largest subunit. Some of the tagged subunit is incorporated into engaged transcription complexes like the wild-type protein; it both resists extraction with sarkosyl and is hyperphosphorylated at its C terminus. Remarkably, subunits bearing such a tag can be incorporated into the active enzyme, despite the size and complexity of the polymerizing complex. Therefore, these cells should prove useful in the analysis of the dynamics of transcription in living cells.


Sign in / Sign up

Export Citation Format

Share Document