scholarly journals Viral Cyclin–Cyclin-Dependent Kinase 6 Complexes Initiate Nuclear DNA Replication

2001 ◽  
Vol 21 (2) ◽  
pp. 624-635 ◽  
Author(s):  
Heike Laman ◽  
Dawn Coverley ◽  
Torsten Krude ◽  
Ronald Laskey ◽  
Nic Jones

ABSTRACT The cyclins encoded by Kaposi sarcoma-associated herpesvirus and herpesvirus saimiri are homologs of human D-type cyclins. However, when complexed to cdk6, they have several activities that distinguish them from D-type cyclin-cdk6 complexes, including resistance to cyclin-dependent kinase inhibitors and an enhanced substrate range. We find that viral cyclins interact with and phosphorylate proteins involved in replication initiation. Using mammalian in vitro replication systems, we show that viral cyclin-cdk6 complexes can directly trigger the initiation of DNA synthesis in isolated late-G1-phase nuclei. Viral cyclin-cdk6 complexes share this capacity with cyclin A-cdk2, demonstrating that in addition to functioning as G1-phase cyclin-cdk complexes, they function as S-phase cyclin-cdk complexes.

2015 ◽  
Vol 89 (21) ◽  
pp. 10821-10831 ◽  
Author(s):  
Lisa M. Williams ◽  
Brian F. Niemeyer ◽  
David S. Franklin ◽  
Eric T. Clambey ◽  
Linda F. van Dyk

ABSTRACTGammaherpesviruses (GHVs) carry homologs of cellular genes, including those encoding a viral cyclin that promotes reactivation from latent infection. The viral cyclin has reduced sensitivity to host cyclin-dependent kinase inhibitorsin vitro; however, thein vivosignificance of this is unclear. Here, we tested the genetic requirement for the viral cyclin in mice that lack the host inhibitors p27Kip1and p18INK4c, two cyclin-dependent kinase inhibitors known to be important in regulating B cell proliferation and differentiation. While the viral cyclin was essential for reactivation in wild-type mice, strikingly, it was dispensable for reactivation in mice lacking p27Kip1and p18INK4c. Further analysis revealed that genetic ablation of only p18INK4calleviated the requirement for the viral cyclin for reactivation from latency. p18INK4cregulated reactivation in a dose-dependent manner so that the viral cyclin was dispensable in p18INK4cheterozygous mice. Finally, treatment of wild-type cells with the cytokine BAFF, a known attenuator of p18INK4cfunction in B lymphocytes, was also able to bypass the requirement for the viral cyclin in reactivation. These data show that the gammaherpesvirus viral cyclin functions specifically to bypass the cyclin-dependent kinase inhibitor p18INK4c, revealing an unanticipated specificity between a GHV cyclin and a single cyclin-dependent kinase inhibitor.IMPORTANCEThe gammaherpesviruses (GHVs) cause lifelong infection and can cause chronic inflammatory diseases and cancer, especially in immunosuppressed individuals. Many GHVs encode a conserved viral cyclin that is required for infection and disease. While a common property of the viral cyclins is that they resist inhibition by normal cellular mechanisms, it remains unclear how important it is that the GHVs resist this inhibition. We used a mouse GHV that either contained or lacked a viral cyclin to test whether the viral cyclin lost importance when these inhibitory pathways were removed. These studies revealed that the viral cyclin was required for optimal function in normal mice but that it was no longer required following removal or reduced function of a single cellular inhibitor. These data define a very specific role for the viral cyclin in bypassing one cellular inhibitor and point to new methods to intervene with viral cyclins.


1996 ◽  
Vol 16 (12) ◽  
pp. 6623-6633 ◽  
Author(s):  
P D Adams ◽  
W R Sellers ◽  
S K Sharma ◽  
A D Wu ◽  
C M Nalin ◽  
...  

Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3985-3987 ◽  
Author(s):  
Mu-Shui Dai ◽  
Charlie R. Mantel ◽  
Zhen-Biao Xia ◽  
Hal E. Broxmeyer ◽  
Li Lu

The dynamics of cell cycle regulation were investigated during in vitro erythroid proliferation and differentiation of CD34+cord blood cells. An unusual cell cycle profile with a majority of cells in S phase (70.2%) and minority of cells in G1 phase (27.4%) was observed in burst-forming unit-erythrocytes (BFU-E)–derived erythroblasts from a 7-day culture of CD34+ cells stimulated with interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), Steel factor, and Epo. Terminal erythroid differentiation was accompanied by a rapid increase of G0/G1 phase cells. Expression of cyclin E and cyclin-dependent kinase 2 (cdk2) correlated with the proportion of S phase cells. Cyclin D3 was moderately up-regulated during the proliferation phase, and both cyclin E and D3 were rapidly down-regulated during terminal differentiation. This suggests that the high proliferation potential of erythroblasts is associated with temporal up-regulation of cyclin E and cdk2.


1998 ◽  
Vol 143 (2) ◽  
pp. 457-467 ◽  
Author(s):  
David S. Park ◽  
Erick J. Morris ◽  
Jaya Padmanabhan ◽  
Michael L. Shelanski ◽  
Herbert M. Geller ◽  
...  

Previous reports have indicated that DNA-damaging treatments including certain anticancer therapeutics cause death of postmitotic nerve cells both in vitro and in vivo. Accordingly, it has become important to understand the signaling events that control this process. We recently hypothesized that certain cell cycle molecules may play an important role in neuronal death signaling evoked by DNA damage. Consequently, we examined whether cyclin-dependent kinase inhibitors (CKIs) and dominant-negative (DN) cyclin-dependent kinases (CDK) protect sympathetic and cortical neurons against DNA-damaging conditions. We show that Sindbis virus–induced expression of CKIs p16ink4, p21waf/cip1, and p27kip1, as well as DN-Cdk4 and 6, but not DN-Cdk2 or 3, protect sympathetic neurons against UV irradiation– and AraC-induced death. We also demonstrate that the CKIs p16 and p27 as well as DN-Cdk4 and 6 but not DN-Cdk2 or 3 protect cortical neurons from the DNA damaging agent camptothecin. Finally, in consonance with our hypothesis and these results, cyclin D1–associated kinase activity is rapidly and highly elevated in cortical neurons upon camptothecin treatment. These results suggest that postmitotic neurons may utilize Cdk4 and 6, signals that normally control proliferation, to mediate death signaling resulting from DNA-damaging conditions.


2004 ◽  
Vol 24 (13) ◽  
pp. 6058-6066 ◽  
Author(s):  
Xin-Hua Zhu ◽  
Hoang Nguyen ◽  
H. Dorota Halicka ◽  
Frank Traganos ◽  
Andrew Koff

ABSTRACT Ubiquitin-dependent proteolysis makes a major contribution to decreasing the levels of p27. Ubiquitin-dependent proteolysis of p27kip1 is growth and cell cycle regulated in two ways: first, skp2, a component of the E3-ubiquitin ligase, is growth regulated, and second, a kinase must phosphorylate the threonine-187 position on p27 so that it can be recognized by skp2. In vitro, p27 is phosphorylated by cyclin E- and cyclin A-associated cdk2 as well as by cyclin B1-cdk1. Having analyzed the effect of different cyclin-cyclin-dependent kinase complexes on ubiquitination of p27 in a reconstitution assay system, we now report a noncatalytic requirement for cyclin A-cdk2. Multiparameter flow cytometric analysis also indicates that p27 turnover correlates best with the onset of S phase, once the levels of cyclin A become nearly maximal. Finally, increasing the amount of both cyclin E-cdk2 and skp2 was less efficient at promoting p27 ubiquitination than was increasing the amount of cyclin A-cdk2 alone in extracts prepared from cultures of >93%-purified G1 cells. Together these lines of evidence suggest that cyclin A-cdk2 plays an ancillary noncatalytic role in the ubiquitination of p27 by the SCFskp2 complex.


2001 ◽  
Vol 21 (4) ◽  
pp. 1196-1206 ◽  
Author(s):  
Susannah L. Green ◽  
Rachel A. Freiberg ◽  
Amato J. Giaccia

ABSTRACT We investigated the role of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 in cell cycle regulation during hypoxia and reoxygenation. While moderate hypoxia (1 or 0.1% oxygen) does not significantly impair bromodeoxyuridine incorporation, at very low oxygen tensions (0.01% oxygen) DNA replication is rapidly shut down in immortalized mouse embryo fibroblasts. This S-phase arrest is intact in fibroblasts lacking the cyclin kinase inhibitors p21Cip1 and p27Kip1, indicating that these molecules are not essential elements of the arrest pathway. Hypoxia-induced arrest is accompanied by dephosphorylation of pRb and inhibition of cyclin-dependent kinase 2, which results in part from inhibitory phosphorylation. Interestingly, cells lacking the retinoblastoma tumor suppressor protein also display arrest under hypoxia, suggesting that pRb is not an essential mediator of this response. Upon reoxygenation, DNA synthesis resumes by 3.5 h and reaches aerobic levels by 6 h. Cells lacking p21, however, resume DNA synthesis more rapidly upon reoxygenation than wild-type cells, suggesting that this inhibitor may play a role in preventing premature reentry into the cell cycle upon cessation of the hypoxic stress. While p27 null cells did not exhibit rapid reentry into the cell cycle, cells lacking both p21 and p27 entered S phase even more aggressively than those lacking p21 alone, revealing a possible secondary role for p27 in this response. Cdk2 activity is also restored more rapidly in the double-knockout cells when returned to normoxia. These studies reveal that restoration of DNA synthesis after hypoxic stress, but not the S phase arrest itself, is regulated by p21 and p27.


2010 ◽  
Vol 30 (21) ◽  
pp. 5057-5070 ◽  
Author(s):  
David R. Croucher ◽  
Danny Rickwood ◽  
Carole M. Tactacan ◽  
Elizabeth A. Musgrove ◽  
Roger J. Daly

ABSTRACT The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21WAF1/Cip1, p27Kip1, and p57Kip2 and inhibition of S-phase entry. These effects were associated with increased binding of p21WAF1/Cip1 and p27Kip1 to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21WAF1/Cip1 and p27Kip1 at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21WAF1/Cip1, p27Kip1, and p57Kip2 downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27Kip1 and p57Kip2 for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.


2011 ◽  
Vol 193 (6) ◽  
pp. 995-1007 ◽  
Author(s):  
Akiko Kumagai ◽  
Anna Shevchenko ◽  
Andrej Shevchenko ◽  
William G. Dunphy

Treslin, a TopBP1-interacting protein, is necessary for deoxyribonucleic acid (DNA) replication in vertebrates. Association between Treslin and TopBP1 requires cyclin-dependent kinase (Cdk) activity in Xenopus laevis egg extracts. We investigated the mechanism and functional importance of Cdk for this interaction using both X. laevis egg extracts and human cells. We found that Treslin also associated with TopBP1 in a Cdk-regulated manner in human cells and that Treslin was phosphorylated within a conserved Cdk consensus target sequence (on S976 in X. laevis and S1000 in humans). Recombinant human Cdk2–cyclin E also phosphorylated this residue of Treslin in vitro very effectively. Moreover, a mutant of Treslin that cannot undergo phosphorylation on this site showed significantly diminished binding to TopBP1. Finally, human cells harboring this mutant were severely deficient in DNA replication. Collectively, these results indicate that Cdk-mediated phosphorylation of Treslin during S phase is necessary for both its effective association with TopBP1 and its ability to promote DNA replication in human cells.


2008 ◽  
Vol 89 (1) ◽  
pp. 87-96 ◽  
Author(s):  
B. Øster ◽  
B. Bundgaard ◽  
T. R. Hupp ◽  
P. Höllsberg

Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although the signalling pathways leading to Ser392 phosphorylation are poorly understood, they seem to include casein kinase 2 (CK2), double-stranded RNA-activated protein kinase (PKR), p38 or cyclin-dependent kinase 9 (Cdk9). By using column chromatography and in vitro kinase assays, CK2 and p38, but not PKR or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2β subunit or p38α by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved in viral replication.


Sign in / Sign up

Export Citation Format

Share Document