scholarly journals Targeting Assay To Study the cis Functions of Human Telomeric Proteins: Evidence for Inhibition of Telomerase by TRF1 and for Activation of Telomere Degradation by TRF2

2002 ◽  
Vol 22 (10) ◽  
pp. 3474-3487 ◽  
Author(s):  
Katia Ancelin ◽  
Michele Brunori ◽  
Serge Bauwens ◽  
Catherine-Elaine Koering ◽  
Christine Brun ◽  
...  

ABSTRACT We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2935-2935
Author(s):  
Ute Brassat ◽  
Stefan Balabanov ◽  
Henning Wege ◽  
Daniel Roessler ◽  
Kerstin Borgmann ◽  
...  

Abstract Disease progression in CML is associated with accelerated telomere shortening caused by increased turnover of Bcr-Abl positive cells. We have recently proposed a model in which continuous telomere shortening is correlated with increasing genetic instability in Bcr-Abl-positive cells thus facilitating the acquisition of secondary genetic abnormalities and, as a consequence clonal succession and eventually clinical progression of the disease. Based on this hypothesis, telomerase upregulation in late stage disease is a prerequisite for prevention of replication-induced senescence in Bcr-Abl positive cells. As a consequence, treatment of CML with Telomerase inhibitors (TI) represents an attractive strategy aiming at the potential eradication of cycling CML stem cells. Therefore, we have exploited both pharmacological (small molecule inhibitor) and genetic strategies (dominant negative hTERT mutants, DN-hTERT) of telomerase inhibition in CML cells in vitro We first treated K562 cells with the pharmacological telomerase inhibitor BIBR1532 in vitro. After around 400 population doublings (PD), no differences in growth kinetics nor signs of senescence or apoptosis were observed in BIBR1532 treated cells despite of significant telomere shortening (22 base pairs (bp) per PD) compared to control cells. Furthermore, neither significant differences in mRNA expression of telomere/telomerase-associated proteins, nor accumulation of double strand breaks (DSBs) under irradiation was observed in treated cells with short telomeres as opposed to untreated control cells. The very slow shortening rate of 22bp/PD plus the lack of stigmata pointing to induction of senescence in K562 cells lead to the assumption that telomerase activity is not complete inhibited by the compound. In order to verify the potency of telomerase directed treatments in CML, we therefore expressed DN-hTERT in K562 cells. Integration of DN-hTERT led to a significant decrease in telomerase activity (measured by RQ-TRAP). Furthermore, DN-hTERT expressing cells underwent accelerated telomere shortening at a substantially higher rate (>100 bp/PD) from 15kb to around 4kb within 110 days of culture. In contrast to BIBR1532-treated cells, DN-hTERT expressing K562 cells slowed down growth kinetic in comparison to control cells after 80 days of culture. By using Annexin 5 staining, 25% of apoptotic cells could be detected in cells with critically short telomeres as compared to control cells (<3%). Finally, a significantly increased accumulation of double strand breaks (DSBs) detected by gammaH2AX foci after exposure to irradiation was observed in DN-hTERT K562 cells as compared to control cells pointing to an impaired DNA repair machinery in Bcr-Abl positive cells with disrupted telomere maintenance. In summary, the data suggest that pharmacological telomerase inhibition by BIBR1532 is insufficient to induce telomere-mediated senescence in Bcr-Abl-positive cells. However, accelerated telomere shortening, slowing down of growth kinetics, elevated apoptosis and increased radiosensitivity induced by expression of DN-hTERT indicate a therapeutic potential for telomerase-directed treatment strategies in CML.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 572-572
Author(s):  
Ute Brassat ◽  
Stefan Balabanov ◽  
Melanie Braig ◽  
Daniel Bali ◽  
Kerstin Borgmann ◽  
...  

Abstract Telomeres consist of repeat structures such as (TTAGGG)n in vertebrates and are localized at the end of chromosomes. Replication-dependent telomere shortening due to the end-replication problem can be counteracted by upregulation of an endogenous reverse transcriptase called telomerase. Increasing evidence suggests that critical telomere shortening results in genetic instability which may promote tumour evolution and telomerase activation during which critically short telomeres are stabilised and ongoing tumour growth is facilitated. In Chronic myeloid leukemia (CML) the high turnover of the malignant clone is driven by the oncogene BCR-ABL and leads to accelerated telomere shortening in chronic phase (CP) compared to telomere length in healthy individuals. Telomere shortening has been demonstrated to be correlated with disease stage, duration, prognosis and response to molecular targeted treatment. Despite of the accelerated telomere shortening observed, telomerase activity is increased in CP CML and further upregulated with progression of the disease to accelerated phase or blast crisis (AP/BC). To investigate the effect of telomerase inhibition on BCR-ABL-positive cells, we expressed a dominant-negative mutant of hTERT (vector pOS DNhTERT-IRES-GFP) in K562 cells. The cells were single sorted and clones in addition to bulk cultures were long term expanded in vitro. The expression of the transgene DNhTERT was monitored by the expression of GFP and function of DNhTERT was analyzed by measurement of telomere length (by flow-FISH) and telomerase activity (TRAP assay). Evaluation of these parameters showed the following patterns of growth kinetics and telomere biology in individual clones: Two clones lost telomere repeats and were transiently delayed in growth kinetics but eventually escaped from crisis without loss of GFP expression (indicated by a re-increase in telomere length and growth rate, group A) Three other clones lost GFP expression after initial and significant telomere reduction indicating loss of the transgene (group B). Finally, telomere length and growth kinetics of two remaining clones and of the bulk culture cells remained unaffected by expression of DN-hTERT (group C). Of note, none of the clones analyzed either died or entered cell cycle arrest. Further analyses of one clone of group A revealed impaired DNA damage response indicated by two fold increase in number of γH2AX foci in comparison to control cells. Moreover, the expression pattern of genes involved in DNA repair was significantly altered (Dual chip®). Network analysis of the altered genes using MetaCore® software confirmed p53 as a key regulator in signaling of DNA damage in these cells. CML blast crisis cell lines such as K562 are typically negative for functional p53 and p16INK4. Therefore, we went on and investigate if the presence of functional p53 is required for the induction of telomere-mediated apoptosis or senescence in BCR-ABL-positive cells. For this purpose, we restored p53 in telomerase-negative clones by using an inducible system (vector pBABE p53ERtam) in two clones from group A and group B. Induction of p53 in cells with critically short telomeres (telomere length 4–5 kb) lead to immediate induction of apoptosis while vector control cells continued to escape from crisis. These results suggest that the success of strategies aimed at telomerase inhibition in CML is dependent on the presence of functional p53 in BCR-ABL-positive cells which argues in favour of applying these strategies preferentially in CP as opposed to BC.


2022 ◽  
Author(s):  
Mounir El Mai ◽  
Jean-Marie GUIGONIS ◽  
Thierry POURCHER ◽  
Da Kang ◽  
Jia-Xing Yue ◽  
...  

Telomere shortening is a hallmark of aging and is counteracted by telomerase. The gut is one of the earliest organs to exhibit short telomeres and tissue dysfunction during normal zebrafish aging. This is recapitulated in prematurely aged telomerase mutants (tert-/-). Here, we show that gut-specific telomerase activity in tert-/- zebrafish prevents premature aging. Induction of telomerase rescues gut senescence and low cell proliferation to wild-type levels, while restoring gut tissue integrity, inflammation, and age-dependent gut microbiota dysbiosis. Remarkably, averting gut dysfunction results in a systemic beneficial impact. Gut-specific telomerase activity rescues premature aging markers in remote organs, such as the reproductive (testes) and hematopoietic (kidney marrow) systems. Functionally, it also rescues age-dependent loss of male fertility and testes atrophy. Finally, we show that gut-specific telomerase activity increases the lifespan of telomerase mutants. Our work demonstrates that delaying telomere shortening in the gut is sufficient to systemically counteract aging in zebrafish.


2007 ◽  
Vol 27 (6) ◽  
pp. 2074-2083 ◽  
Author(s):  
Keren L. Witkin ◽  
Ramadevi Prathapam ◽  
Kathleen Collins

ABSTRACT Telomerase replenishes the telomeric repeats that cap eukaryotic chromosome ends. To perform DNA synthesis, the active site of telomerase reverse transcriptase (TERT) copies a template within the integral telomerase RNA (TER). In vivo, TERT and TER and additional subunits form a telomerase holoenzyme capable of telomere elongation. We previously purified epitope-tagged Tetrahymena thermophila TERT and characterized two of the associated proteins. Here we characterize the remaining two proteins that were enriched by TERT purification. The primary sequence of the p75 polypeptide lacks evident homology with other proteins, whereas the p20 polypeptide is the Tetrahymena ortholog of a conserved multifunctional protein, Skp1. Genetic depletion of p75 induced telomere shortening without affecting the accumulation of TER or TERT, suggesting that p75 promotes telomerase function at the telomere. Affinity purification of p75 coenriched telomerase activity and each other known telomerase holoenzyme protein. On the other hand, genetic depletion of Skp1p induced telomere elongation, suggesting that this protein plays a negative regulatory role in the maintenance of telomere length homeostasis. Affinity purification of Skp1p did not detectably enrich active telomerase but did copurify ubiquitin ligase machinery. These studies reveal additional complexity in the positive and negative regulation of Tetrahymena telomerase function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan M. Baxley ◽  
Wendy Leung ◽  
Megan M. Schmit ◽  
Jacob Peter Matson ◽  
Lulu Yin ◽  
...  

AbstractMinichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


1996 ◽  
Vol 16 (7) ◽  
pp. 3765-3772 ◽  
Author(s):  
D Broccoli ◽  
L A Godley ◽  
L A Donehower ◽  
H E Varmus ◽  
T de Lange

Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.


2000 ◽  
Vol 20 (8) ◽  
pp. 2941-2948 ◽  
Author(s):  
John C. Prescott ◽  
Elizabeth H. Blackburn

ABSTRACT Telomeric DNA is maintained within a length range characteristic of an organism or cell type. Significant deviations outside this range are associated with altered telomere function. The yeast telomere-binding protein Rap1p negatively regulates telomere length. Telomere elongation is responsive to both the number of Rap1p molecules bound to a telomere and the Rap1p-centered DNA-protein complex at the extreme telomeric end. Previously, we showed that a specific trinucleotide substitution in the Saccharomyces cerevisiae telomerase gene (TLC1) RNA template abolished the enzymatic activity of telomerase, causing the same cell senescence and telomere shortening phenotypes as a complete tlc1 deletion. Here we analyze effects of six single- and double-base changes within these same three positions. All six mutant telomerases had in vitro enzymatic activity levels similar to the wild-type levels. The base changes predicted from the mutations all disrupted Rap1p binding in vitro to the corresponding duplex DNAs. However, they caused two classes of effects on telomere homeostasis: (i) rapid, RAD52-independent telomere lengthening and poor length regulation, whose severity correlated with the decrease in in vitro Rap1p binding affinity (this is consistent with loss of negative regulation of telomerase action at these telomeres; and (ii) telomere shortening that, depending on the template mutation, either established a new short telomere set length with normal cell growth or was progressive and led to cellular senescence. Hence, disrupting Rap1p binding at the telomeric terminus is not sufficient to deregulate telomere elongation. This provides further evidence that both positive and negativecis-acting regulators of telomerase act at telomeres.


2008 ◽  
Vol 131 (2) ◽  
pp. 160-169 ◽  
Author(s):  
Wei Wang ◽  
Ping Yu ◽  
Peng Zhang ◽  
Yujun Shi ◽  
Hong Bu ◽  
...  

2010 ◽  
Vol 191 (7) ◽  
pp. 1299-1313 ◽  
Author(s):  
Jose A. Palacios ◽  
Daniel Herranz ◽  
Maria Luigia De Bonis ◽  
Susana Velasco ◽  
Manuel Serrano ◽  
...  

Yeast Sir2 deacetylase is a component of the silent information regulator (SIR) complex encompassing Sir2/Sir3/Sir4. Sir2 is recruited to telomeres through Rap1, and this complex spreads into subtelomeric DNA via histone deacetylation. However, potential functions at telomeres for SIRT1, the mammalian orthologue of yeast Sir2, are less clear. We studied both loss of function (SIRT1 deficient) and gain of function (SIRT1super) mouse models. Our results indicate that SIRT1 is a positive regulator of telomere length in vivo and attenuates telomere shortening associated with aging, an effect dependent on telomerase activity. Using chromatin immunoprecipitation assays, we find that SIRT1 interacts with telomeric repeats in vivo. In addition, SIRT1 overexpression increases homologous recombination throughout the entire genome, including telomeres, centromeres, and chromosome arms. These findings link SIRT1 to telomere biology and global DNA repair and provide new mechanistic explanations for the known functions of SIRT1 in protection from DNA damage and some age-associated pathologies.


Sign in / Sign up

Export Citation Format

Share Document