scholarly journals Impaired Hepatocyte DNA Synthetic Response Posthepatectomy in Insulin-Like Growth Factor Binding Protein 1-Deficient Mice with Defects in C/EBPβ and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Regulation

2003 ◽  
Vol 23 (4) ◽  
pp. 1251-1259 ◽  
Author(s):  
Julia I. Leu ◽  
Mary Ann S. Crissey ◽  
Linden E. Craig ◽  
Rebecca Taub

ABSTRACT After a two-thirds hepatectomy, normally quiescent liver cells are stimulated to reenter the cell cycle and proliferate to restore the original liver mass. One of the most rapidly and highly induced genes and proteins in regenerating liver is insulin-like growth factor binding protein 1 (IGFBP-1), a secreted protein that may modulate the activities of insulin-like growth factors (IGFs) or signal via IGF-independent mechanisms. To assess the functional role of IGFBP-1 in liver regeneration, mice with a targeted disruption of the IGFBP-1 gene were generated. Although IGFBP-1−/− mice demonstrated normal development, they had abnormal liver regeneration after partial hepatectomy, characterized by liver necrosis and reduced and delayed hepatocyte DNA synthesis. The abnormal regenerative response was associated with blunted activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and a reduced induction of C/EBPβ protein expression posthepatectomy. Like cell cycle abnormalities observed in hepatectomized C/EBPβ−/− mice, cyclin A and cyclin B1 expression was delayed and reduced in IGFBP-1−/− livers, whereas cyclin D1 expression was normal. Treatment of IGFBP-1−/− mice with a preoperative dose of IGFBP-1 induced MAPK/ERK activation and C/EBPβ expression, suggesting that IGFBP-1 may support liver regeneration at least in part via its effect on MAPK/ERK and C/EBPβ activities. These findings are the first demonstration of the involvement of IGFBP-1 in the regulation of in vivo mitogenic signaling pathways.

1998 ◽  
Vol 18 (4) ◽  
pp. 1946-1955 ◽  
Author(s):  
Jun Xing ◽  
Jon M. Kornhauser ◽  
Zhengui Xia ◽  
Elizabeth A. Thiele ◽  
Michael E. Greenberg

ABSTRACT The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes.


2001 ◽  
Vol 281 (4) ◽  
pp. L766-L775 ◽  
Author(s):  
Isabel Carreras ◽  
Celeste B. Rich ◽  
Julie A. Jaworski ◽  
Sandra J. Dicamillo ◽  
Mikhail P. Panchenko ◽  
...  

Previously, we have demonstrated that basic fibroblast growth factor (bFGF) decreases elastin gene transcription in confluent rat lung fibroblasts via the binding of a Fra-1-c-Jun heterodimer to an activator protein-1-cAMP response element in the distal region of the elastin promoter. In the present study, we show that bFGF activates the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, resulting in the translocation of phosphorylated extracellular signal-regulated kinase 1/2 into the nucleus followed by increased binding of Elk-1 to the serum response element of the c-Fos promoter, transient induction of c-Fos mRNA, and sustained induction of Fra-1 mRNA. The addition of PD-98059, an inhibitor of mitogen-activated protein kinase kinase, abrogates the bFGF-dependent repression of elastin mRNA expression. Comparative analyses of confluent and subconfluent fibroblast cultures reveal significant differences in elastin mRNA levels and activator protein-1 protein factors involved in the regulation of elastin transcription. These findings suggest that bFGF modulates specific cellular events that are dependent on the state of the cell and provide a rationale for the differential responses that can be expected in development and injury or repair situations.


Sign in / Sign up

Export Citation Format

Share Document