scholarly journals SMG-1 Is a Phosphatidylinositol Kinase-Related Protein Kinase Required for Nonsense-Mediated mRNA Decay in Caenorhabditis elegans

2004 ◽  
Vol 24 (17) ◽  
pp. 7483-7490 ◽  
Author(s):  
Andrew Grimson ◽  
Sean O'Connor ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic messenger RNAs containing premature stop codons are selectively and rapidly degraded, a phenomenon termed nonsense-mediated mRNA decay (NMD). Previous studies with both Caenohabditis elegans and mammalian cells indicate that SMG-2/human UPF1, a central regulator of NMD, is phosphorylated in an SMG-1-dependent manner. We report here that smg-1, which is required for NMD in C. elegans, encodes a protein kinase of the phosphatidylinositol kinase superfamily of protein kinases. We identify null alleles of smg-1 and demonstrate that SMG-1 kinase activity is required in vivo for NMD and in vitro for SMG-2 phosphorylation. SMG-1 and SMG-2 coimmunoprecipitate from crude extracts, and this interaction is maintained in smg-3 and smg-4 mutants, both of which are required for SMG-2 phosphorylation in vivo and in vitro. SMG-2 is located diffusely through the cytoplasm, and its location is unaltered in mutants that disrupt the cycle of SMG-2 phosphorylation. We discuss the role of SMG-2 phosphorylation in NMD.

2000 ◽  
Vol 345 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Paulus C. J. VAN DER HOEVEN ◽  
José C. M. VAN DER WAL ◽  
Paula RUURS ◽  
Marc C. M. VAN DIJK ◽  
Wim J. VAN BLITTERSWIJK

14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-ζ (PKC-ζ) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-ζ-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipitation experiments in COS cells revealed that complex formation between PKC-ζ and Raf-1 is mediated strongly by the 14-3-3β and -θ isotypes, but not by 14-3-3ζ. Far-Western blotting revealed that 14-3-3 binds PKC-ζ directly at its regulatory domain, where a S186A mutation in a putative 14-3-3-binding domain strongly reduced the binding and the complex formation with 14-3-3β and Raf-1. Treatment of PKC-ζ with lambda protein phosphatase also reduced its binding to 14-3-3β in vitro. Preincubation of an immobilized Raf-1 construct with 14-3-3β facilitated PKC-ζ binding. Together, the results suggest that 14-3-3 binds both PKC-ζ (at phospho-Ser-186) and Raf-1 in a ternary complex. Complex formation was much stronger with a kinase-inactive PKC-ζ mutant than with wild-type PKC-ζ, supporting the idea that kinase activity leads to complex dissociation. 14-3-3β and -θ were substrates for PKC-ζ, whereas 14-3-3ζ was not. Phosphorylation of 14-3-3β by PKC-ζ negatively regulated their physical association. 14-3-3β with its putative PKC-ζ phosphorylation sites mutated enhanced co-precipitation between PKC-ζ and Raf-1, suggesting that phosphorylation of 14-3-3 by PKC-ζ weakens the complex in vivo. We conclude that 14-3-3 facilitates coupling of PKC-ζ to Raf-1 in an isotype-specific and phosphorylation-dependent manner. We suggest that 14-3-3 is a transient mediator of Raf-1 phosphorylation and activation by PKC-ζ.


1996 ◽  
Vol 16 (11) ◽  
pp. 6295-6302 ◽  
Author(s):  
D R Taylor ◽  
S B Lee ◽  
P R Romano ◽  
D R Marshak ◽  
A G Hinnebusch ◽  
...  

The interferon-induced RNA-dependent protein kinase PKR is found in cells in a latent state. In response to the binding of double-stranded RNA, the enzyme becomes activated and autophosphorylated on several serine and threonine residues. Consequently, it has been postulated that autophosphorylation is a prerequisite for activation of the kinase. We report the identification of PKR sites that are autophosphorylated in vitro concomitantly with activation and examine their roles in the activation of PKR. Mutation of one site, threonine 258, results in a kinase that is less efficient in autophosphorylation and in phosphorylating its substrate, the initiation factor eIF2, in vitro. The mutant kinase is also impaired in vivo, displaying reduced ability to inhibit protein synthesis in yeast and mammalian cells and to induce a slow-growth phenotype in Saccharomyces cerevisiae. Mutations at two neighboring sites, serine 242 and threonine 255, exacerbated the effect. Taken together with earlier results (S. B. Lee, S. R. Green, M. B. Mathews, and M. Esteban, Proc. Natl. Acad. Sci. USA 91:10551-10555, 1994), these data suggest that the central part of the PKR molecule, lying between its RNA-binding and catalytic domains, regulates kinase activity via autophosphorylation.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2004 ◽  
Vol 24 (23) ◽  
pp. 10397-10405 ◽  
Author(s):  
Manuel Ascano ◽  
David J. Robbins

ABSTRACT The protein kinase Fused (Fu) is an integral member of the Hedgehog (Hh) signaling pathway. Although genetic studies demonstrate that Fu is required for the regulation of the Hh pathway, the mechanistic role that it plays remains largely unknown. Given our difficulty in developing an in vitro kinase assay for Fu, we reasoned that the catalytic activity of Fu might be highly regulated. Several mechanisms are known to regulate protein kinases, including self-association in either an intra- or an intermolecular fashion. Here, we provide evidence that Hh regulates Fu through intramolecular association between its kinase domain (ΔFu) and its carboxyl-terminal domain (Fu-tail). We show that ΔFu and Fu-tail can interact in trans, with or without the kinesin-related protein Costal 2 (Cos2). However, since the majority of Fu is found associated with Cos2 in vivo, we hypothesized that Fu-tail, which binds Cos2 directly, would be able to tether ΔFu to Cos2. We demonstrate that ΔFu colocalizes with Cos2 in the presence of Fu-tail and that this colocalization occurs on a subset of membrane vesicles previously characterized to be important for Hh signal transduction. Additionally, expression of Fu-tail in fu mutant flies that normally express only the kinase domain rescues the fu wing phenotype. Therefore, reestablishing the association between these two domains of Fu in trans is sufficient to restore Hh signal transduction in vivo. In such a manner we validate our hypothesis, demonstrating that Fu self-associates and is functional in an Hh-dependent manner. Our results here enhance our understanding of one of the least characterized, yet critical, components of Hh signal transduction.


Author(s):  
Minsu PARK ◽  
Hyeon Kyeong CHOI ◽  
Jeung Hee AN

Background: We aimed to elucidate the preventive effects of taurine against osteopenia in ovariectomized (OVX) rats and the mechanisms by which taurine regulates osteoblastogenesis in vitro and in vivo. Methods: The effects of the taurine on human osteoblast MG-63 cell differentiation and osteoblastogenesis effect in OVX rat were examined Konkuk University in 2018 by evaluating osteoblast differentiation, and expression of osteoblast-specific factors by western blotting analysis. Results: Taurine supplementation significantly improved alkaline phosphatase (ALP) activity and mineralization in a concentration-dependent manner. Further, taurine induced the expression of osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (RUNX2), small mothers against decapentaplegic 1/5/8 (SMAD1/5/8), wingless-type MMTV integration site family member 3A (Wnt3a), and collagen type 1 (COL-1) via mitogen-activated protein kinase (MAPK) and serine/threonine protein kinase (Akt). Moreover, the RUNX2 activity of the taurine-treated group was enhanced by proteinprotein interactions such as Wnt3a-induced p-AKT/RUNX2 and BMP-mediated SMADs/MAPK/RUNX2 interactions. Conclusion: Our in vitro and in vivo results suggested that taurine can be considered as a potential therapeutic candidate agent for preventing bone loss in postmenopausal osteoporosis.


2002 ◽  
Vol 277 (51) ◽  
pp. 49638-49643 ◽  
Author(s):  
Qishen Pang ◽  
Tracy A. Christianson ◽  
Winifred Keeble ◽  
Tara Koretsky ◽  
Grover C. Bagby

Proteins encoded by five of the six known Fanconi anemia (FA) genes form a heteromeric complex that facilitates repair of DNA damage induced by cross-linking agents. A certain number of these proteins, notably FANCC, also function independently to modulate apoptotic signaling, at least in part, by suppressing ground state activation of the pro-apoptotic interferon-inducible double-stranded RNA-dependent protein kinase (PKR). Because certain FANCC mutations interdict its anti-apoptotic function without interfering with the capacity of FANCC to participate functionally in the FA multimeric complex, we suspected that FANCC enhances cell survival independent of its participation in the complex. By investigating this function in both mammalian cells and in yeast, an organism with no FA orthologs, we show that FANCC inhibited the kinase activity of PKR bothin vivoandin vitro, and this effect depended upon a physical interaction between FANCC and Hsp70 but not on interactions of FANCC with other Fanconi proteins. Hsp70, FANCC, and PKR form a ternary complex in lymphoblasts and in yeast expressing PKR. We conclude that Hsp70 requires the cooperation of FANCC to suppress PKR activity and support survival of hematopoietic cells and that FANCC does not require the multimeric FA complex to exert this function.


2021 ◽  
Author(s):  
Kyle W Bender ◽  
Daniel Couto ◽  
Yasuhiro Kadota ◽  
Alberto P Macho ◽  
Jan Sklenar ◽  
...  

Receptor kinases (RKs) play fundamental roles in extracellular sensing to regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) function primarily as peptide receptors that regulate myriad aspects of plant development and response to external stimuli. Extensive phosphorylation of LRR-RK cytoplasmic domains is among the earliest detectable responses following ligand perception, and reciprocal transphosphorylation between a receptor and its co-receptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model RK, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in anti-bacterial immunity. These results reveal a non-catalytic role for the EFR cytoplasmic domain in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RK complexes with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor which could initiate signaling in a feed-forward fashion either allosterically or through driving the dissociation of negative regulators of the complex.


2017 ◽  
Author(s):  
Jonathan O. Nelson ◽  
Dominique Förster ◽  
Kimberly A. Frizzell ◽  
Stefan Luschnig ◽  
Mark M. Metzstein

ABSTRACTThe nonsense-mediated mRNA decay (NMD) pathway is a cellular quality control and post-transcriptional gene regulatory mechanism and is essential for viability in most multicellular organisms. A complex of proteins has been identified to be required for NMD function to occur, however the individual contribution of each of these factors to the NMD process is not well understood. Central to the NMD process are two proteins Upf1 (SMG-2) and Upf2 (SMG-3), which are found in all eukaryotes and are absolutely required for NMD in all organisms in which it has been examined. The other known NMD factors, Smg1, Smg5, Smg6, and Smg7 are more variable in their presence in different orders of organisms, and are thought to have a more regulatory role. Here we present the first genetic analysis of the NMD factor Smg5 in Drosophila. Surprisingly, we find that unlike the other analyzed Smg genes in this organism, Smg5 is essential for NMD activity. We found this is due at least in part to a role for Smg5 in the activity of two separable NMD-target decay mechanisms: endonucleolytic cleavage and 5′-to-3′ exonucleolytic decay. Redundancy between these degradation pathways explains why some Drosophila NMD genes are not required for all NMD-pathway activity. We also found that while the NMD component Smg1 has only a minimal role in Drosophila NMD during normal conditions, it becomes essential when NMD activity is compromised by partial loss of Smg5 function. Our findings suggest that not all NMD complex components are required for NMD function at all times, but instead are utilized in a context dependent manner in vivo.


2019 ◽  
Vol 116 (3) ◽  
pp. 576-591 ◽  
Author(s):  
Panagiotis Efentakis ◽  
Aimilia Varela ◽  
Evangelia Chavdoula ◽  
Fragiska Sigala ◽  
Despina Sanoudou ◽  
...  

Abstract Aims Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. Methods and results Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN−/−) mice were assigned to PLN−/−/Control (N/S-0.9%), PLN−/−/DXR (18 mg/kg), and PLN−/−/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 μg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan’s cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN−/− mice. Levosimendan’s cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. Conclusion Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.


2020 ◽  
Vol 20 (5) ◽  
pp. 377-389 ◽  
Author(s):  
Vigyasa Singh ◽  
Rahul Singh Hada ◽  
Amad Uddin ◽  
Babita Aneja ◽  
Mohammad Abid ◽  
...  

Background: Novel drug development against malaria parasite over old conventional antimalarial drugs is essential due to rapid and indiscriminate use of drugs, which led to the emergence of resistant strains. Methods: In this study, previously reported triazole-amino acid hybrids (13-18) are explored against Plasmodium falciparum as antimalarial agents. Among six compounds, 15 and 18 exhibited antimalarial activity against P. falciparum with insignificant hemolytic activity and cytotoxicity towards HepG2 mammalian cells. In molecular docking studies, both compounds bind into the active site of PfFP-2 and block its accessibility to the substrate that leads to the inhibition of target protein further supported by in vitro analysis. Results: Antimalarial half-maximal inhibitory concentration (IC50) of 15 and 18 compounds were found to be 9.26 μM and 20.62 μM, respectively. Blood stage specific studies showed that compounds, 15 and 18 are effective at late trophozoite stage and block egress pathway of parasites. Decreased level of free monomeric heme was found in a dose dependent manner after the treatment with compounds 15 and 18, which was further evidenced by the reduction in percent of hemoglobin hydrolysis. Compounds 15 and 18 hindered hemoglobin degradation via intra- and extracellular cysteine protease falcipain-2 (PfFP-2) inhibitory activity both in in vitro and in vivo in P. falciparum. Conclusion: We report antimalarial potential of triazole-amino acid hybrids and their role in the inhibition of cysteine protease PfFP-2 as its mechanistic aspect.


Sign in / Sign up

Export Citation Format

Share Document