scholarly journals A Network of Immediate Early Gene Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal Amplitude and Duration

2004 ◽  
Vol 24 (1) ◽  
pp. 144-153 ◽  
Author(s):  
Leon O. Murphy ◽  
Jeffrey P. MacKeigan ◽  
John Blenis

ABSTRACT The strength and duration of mitogen-activated protein kinase (MAPK) signaling have been shown to regulate cell fate in different cell types. In this study, a general mechanism is described that explains how subtle differences in signaling kinetics are translated into a specific biological outcome. In fibroblasts, the expression of immediate early gene (IEG)-encoded Fos, Jun, Myc, and early growth response gene 1 (Egr-1) transcription factors is significantly extended by sustained extracellular signal-regulated kinase 1 and 2 (ERK1 and -2) signaling. Several of these proteins contain functional docking site for ERK, FXFP (DEF) domains that serve to locally concentrate the active kinase, thus showing that they can function as ERK sensors. Sustained ERK signaling regulates the posttranslational modifications of these IEG-encoded sensors, which contributes to their sustained expression during the G1-S transition. DEF domain-containing sensors can also interpret the small changes in ERK signal strength that arise from less than a threefold reduction in agonist concentration. As a result, downstream target gene expression and cell cycle progression are significantly changed.

2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


2005 ◽  
Vol 25 (11) ◽  
pp. 4676-4682 ◽  
Author(s):  
Jeffrey P. MacKeigan ◽  
Leon O. Murphy ◽  
Christopher A. Dimitri ◽  
John Blenis

ABSTRACT The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.


1995 ◽  
Vol 15 (9) ◽  
pp. 4930-4938 ◽  
Author(s):  
R Zinck ◽  
M A Cahill ◽  
M Kracht ◽  
C Sachsenmaier ◽  
R A Hipskind ◽  
...  

Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPK alpha efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction.


2005 ◽  
Vol 25 (9) ◽  
pp. 3784-3792 ◽  
Author(s):  
Midori Kayahara ◽  
Xin Wang ◽  
Cathy Tournier

ABSTRACT To further understand how the mitogen-activated protein kinase (MAPK) signaling pathways regulate AP-1 activity, we have elucidated the physiological role of these cascades in the regulation of c-jun gene expression. c-Jun is a crucial component of AP-1 complexes and has been shown in vitro to be a point of integration of numerous signals that can differentially affect its expression as well as its transcriptional activity. Our strategy was based on the use of (i) genetically modified fibroblasts deficient in components of the MAPK cascades and (ii) pharmacological reagents. The results demonstrate that c-Jun NH2-terminal protein kinase (JNK) is essential for a basal level of c-Jun expression and for c-Jun phosphorylation in response to stress. In addition to JNK, p38 MAPK or ERK1/2 and ERK5 are required for mediating UV radiation- or epidermal growth factor (EGF)-induced c-Jun expression, respectively. Further studies indicate that p38 MAPK inhibits the activation of JNK in response to EGF, causing a down-regulation of c-Jun. Overall, these data provide important insights into the mechanisms that ultimately determine the function of c-Jun as a regulator of cell fate.


2012 ◽  
Vol 40 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Amanda O'Donnell ◽  
Zaneta Odrowaz ◽  
Andrew D. Sharrocks

The study of IE (immediate-early) gene activation mechanisms has provided numerous paradigms for how transcription is controlled in response to extracellular signalling. Many of the findings have been derived from investigating one of the IE genes, FOS, and the models extrapolated to regulatory mechanisms for other IE genes. However, whereas the overall principles of activation appear similar, recent evidence suggests that the underlying mechanistic details may differ depending on cell type, cellular stimulus and IE gene under investigation. In the present paper, we review recent advances in our understanding of IE gene transcription, chiefly focusing on FOS and its activation by ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway signalling. We highlight important fundamental regulatory principles, but also illustrate the gaps in our current knowledge and the potential danger in making assumptions based on extrapolation from disparate studies.


2019 ◽  
Vol 20 (10) ◽  
pp. 2490 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chun-Hsun Huang ◽  
Sindy Hu ◽  
Hui-Ling Peng ◽  
Shu-Ju Wu

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4211
Author(s):  
Yen-Tze Liu ◽  
Hsin-Yu Ho ◽  
Chia-Chieh Lin ◽  
Yi-Ching Chuang ◽  
Yu-Sheng Lo ◽  
...  

Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document