scholarly journals Yeast Chromatin Assembly Complex 1 Protein Excludes Nonacetylatable Forms of Histone H4 from Chromatin and the Nucleus

2004 ◽  
Vol 24 (23) ◽  
pp. 10180-10192 ◽  
Author(s):  
Lynn Glowczewski ◽  
Jakob H. Waterborg ◽  
Judith G. Berman

ABSTRACT In yeast, the establishment and maintenance of a transcriptionally silent chromatin state are dependent upon the acetylation state of the N terminus of histone proteins. Histone H4 proteins that contain mutations in N-terminal lysines disrupt heterochromatin and result in yeast that cannot mate. Introduction of a wild-type copy of histone H4 restores mating, despite the presence of the mutant protein, suggesting that mutant H4 protein is either excluded from, or tolerated in, chromatin. To understand how the cell differentiates wild-type histone and mutant histone in which the four N-terminal lysines were replaced with alanine (H4-4A), we analyzed silencing, growth phenotypes, and the histone composition of chromatin in yeast strains coexpressing equal amounts of wild-type and mutant H4 proteins (histone H4 heterozygote). We found that histone H4 heterozygotes have defects in heterochromatin silencing and growth, implying that mutations in H4 are not completely recessive. Nuclear preparations from histone H4 heterozygotes contained less mutant H4 than wild-type H4, consistent with the idea that cells exclude some of the mutant histone. Surprisingly, the N-terminal nuclear localization signal of H4-4A fused to green fluorescent protein was defective in nuclear localization, while a mutant in which the four lysines were replaced with arginine (H4-4R) appeared to have normal nuclear import, implying a role for the charged state of the acetylatable lysines in the nuclear import of histones. The biased partial exclusion of H4-4A was dependent upon Cac1p, the largest subunit of yeast chromatin assembly factor 1 (CAF-1), as well as upon the karyopherin Kap123p, but was independent of Cac2p, another CAF-1 component, and other chromatin assembly proteins (Hir3p, Nap1p, and Asf1p). We conclude that N-terminal lysines of histone H4 are important for efficient histone nuclear import. In addition, our data support a model whereby Cac1p and Kap123 cooperate to ensure that only appropriately acetylated histone H4 proteins are imported into the nucleus.

2001 ◽  
Vol 75 (19) ◽  
pp. 9393-9406 ◽  
Author(s):  
Michael M. Goodin ◽  
Jennifer Austin ◽  
Renée Tobias ◽  
Miki Fujita ◽  
Christina Morales ◽  
...  

ABSTRACT We have characterized the interaction and nuclear localization of the nucleocapsid (N) protein and phosphoprotein (P) of sonchus yellow net nucleorhabdovirus. Expression studies with plant and yeast cells revealed that both N and P are capable of independent nuclear import. Site-specific mutagenesis and deletion analyses demonstrated that N contains a carboxy-terminal bipartite nuclear localization signal (NLS) located between amino acids 465 and 481 and that P contains a karyophillic region between amino acids 40 and 124. The N NLS was fully capable of functioning outside of the context of the N protein and was able to direct the nuclear import of a synthetic protein fusion consisting of green fluorescent protein fused to glutathioneS-transferase (GST). Expression and mapping studies suggested that the karyophillic domain in P is located within the N-binding domain. Coexpression of N and P drastically affected their localization patterns relative to those of individually expressed proteins and resulted in a shift of both proteins to a subnuclear region. Yeast two-hybrid and GST pulldown experiments verified the N-P and P-P interactions, and deletion analyses have identified the N and P interacting domains. N NLS mutants were not transported to the nucleus by import-competent P, presumably because N binding masks the P NLS. Taken together, our results support a model for independent entry of N and P into the nucleus followed by associations that mediate subnuclear localization.


2001 ◽  
Vol 114 (3) ◽  
pp. 589-597 ◽  
Author(s):  
J.K. Hood ◽  
W.W. Hwang ◽  
P.A. Silver

The cyclin-dependent kinase Cdc28p associates with the cyclin Clb2p to induce mitosis in the yeast Saccharomyces cerevisiae. Several cell cycle regulatory proteins have been shown to require specific nuclear transport events to exert their regulatory functions. Therefore, we investigated the subcellular localization of wild-type Clb2p and several mutant versions of the protein using green fluorescent protein (GFP) fusion constructs. Wild-type Clb2p is primarily nuclear at all points of the cell. A point mutation in a potential leucine-rich nuclear export signal (NES) enhances the nuclear localization of the protein, and delta-yrb2 cells exhibit an apparent Clb2p nuclear export defect. Clb2p contains a bipartite nuclear localization signal (NLS), and its nuclear localization requires the alpha and beta importins (Srp1p and Kap95p), as well as the yeast Ran GTPase and its regulators. Deletion of the Clb2p NLS causes increased cytoplasmic localization of the protein, as well as accumulation at the bud neck. These data indicate that Clb2p exists in multiple places in the yeast cell, possibly allowing Cdc28p to locally phosphorylate substrates at distinct subcellular sites.


2016 ◽  
Vol 36 (23) ◽  
pp. 2995-3008 ◽  
Author(s):  
Lei Fang ◽  
Danqi Chen ◽  
Clinton Yu ◽  
Hongjie Li ◽  
Jason Brocato ◽  
...  

Acrolein is a major component of cigarette smoke and cooking fumes. Previously, we reported that acrolein compromises chromatin assembly; however, underlying mechanisms have not been defined. Here, we report that acrolein reacts with lysine residues, including lysines 5 and 12, sites important for chromatin assembly, on histone H4 in vitro and in vivo . Acrolein-modified histones are resistant to acetylation, suggesting that the reduced H4K12 acetylation that occurs following acrolein exposure is probably due to the formation of acrolein-histone lysine adducts. Accordingly, the association of H3/H4 with the histone chaperone ASF1 and importin 4 is disrupted and the translocation of green fluorescent protein-tagged H3 is inhibited in cells exposed to acrolein. Interestingly, in vitro plasmid supercoiling assays revealed that treatment of either histones or ASF1 with acrolein has no effect on the formation of plasmid supercoiling, indicating that acrolein-protein adduct formation itself does not directly interfere with nucleosome assembly. Notably, exposure of histones to acrolein prior to histone acetylation leads to the inhibition of remodeling and spacing factor chromatin assembly, which requires acetylated histones for efficient assembly. These results suggest that acrolein compromises chromatin assembly by reacting with histone lysine residues at the sites critical for chromatin assembly and prevents these sites from physiological modifications.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


2002 ◽  
Vol 76 (18) ◽  
pp. 9505-9515 ◽  
Author(s):  
Victoria A. Olson ◽  
Justin A. Wetter ◽  
Paul D. Friesen

ABSTRACT Immediate-early protein IE1 is a principal regulator of viral transcription and a contributor to origin-specific DNA replication of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Since these viral functions involve interaction of dimeric IE1 with palindromic homologous region (hr) enhancer-origin elements of the AcMNPV genome within the nucleus, it is presumed that proper nuclear transport of IE1 is essential for productive infection. To investigate the mechanisms of IE1 nuclear import, we analyzed the effect of site-directed mutations on IE1 subcellular distribution. As demonstrated by fluorescence microscopy and biochemical fractionation of plasmid-transfected cells, wild-type IE1 localized predominantly to the nucleus. Substitution or deletion of amino acid residues within a positively charged domain (residues 534 to 538) adjacent to IE1's oligomerization motif impaired nuclear import and caused loss of transactivation. Moreover, upon coexpression, these import-defective mutations prevented nuclear entry of wild-type IE1. In contrast, double-mutated IE1 defective for both nuclear import and dimerization failed to block nuclear entry or transactivation by wild-type IE1. Thus, import-defective IE1 dominantly interfered with wild-type IE1 by direct interaction and cytosolic trapping. Collectively, our data indicate that the small basic domain encompassing residues R537 and R538 constitutes a novel nuclear localization element that functions only upon IE1 dimerization. These findings support a model wherein IE1 oligomerizes within the cytosol as a prerequisite for nuclear entry and subsequent high-affinity interaction with the symmetrical binding sites comprising AcMNPV hr enhancer-origin elements.


2006 ◽  
Vol 17 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Keylon L. Cheeseman ◽  
Takehiko Ueyama ◽  
Tanya M. Michaud ◽  
Kaori Kashiwagi ◽  
Demin Wang ◽  
...  

Protein kinase C-ϵ (PKC-ϵ) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-ϵ mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding ϵC1 and ϵC1B domains, or the ϵC1B point mutant ϵC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that ϵC259G, ϵC1, and ϵC1B accumulation at phagosomes was significantly less than that of intact PKC-ϵ. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-ϵ translocation. Thus, DAG binding to ϵC1B is necessary for PKC-ϵ translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-γ1, and PI-PLC-γ2 in PKC-ϵ accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-ϵ localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-ϵ accumulation. Although expression of PI-PLC-γ2 is higher than that of PI-PLC-γ1, PI-PLC-γ1 but not PI-PLC-γ2 consistently concentrated at phagosomes. Macrophages from PI-PLC-γ2-/-mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-ϵ at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-γ1 as the enzyme that supports PKC-ϵ localization and phagocytosis. That PI-PLC-γ1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-γ1 provides DAG that binds to ϵC1B, facilitating PKC-ϵ localization to phagosomes for efficient IgG-mediated phagocytosis.


2006 ◽  
Vol 87 (4) ◽  
pp. 789-793 ◽  
Author(s):  
Anita Burgess ◽  
Marion Buck ◽  
Kenia Krauer ◽  
Tom Sculley

The Epstein–Barr virus nuclear antigen (EBNA) 3B is a hydrophilic, proline-rich, charged protein that is thought to be involved in transcriptional regulation and is targeted exclusively to the cell nucleus, where it localizes to discrete subnuclear granules. Co-localization studies utilizing a fusion protein between enhanced green fluorescent protein (EGFP) and EBNA3B with FLAG-tagged EBNA3A and EBNA3C proteins demonstrated that EBNA3B co-localized with both EBNA3A and EBNA3C in the nuclei of cells when overexpressed. Computer analyses identified four potential nuclear-localization signals (NLSs) in the EBNA3B amino acid sequence. By utilizing fusion proteins with EGFP, deletion constructs of EBNA3B and site-directed mutagenesis, three of the four NLSs (aa 160–166, 430–434 and 867–873) were shown to be functional in truncated forms of EBNA3B, whilst an additional NLS (aa 243–246) was identified within the N-terminal region of EBNA3B. Only two of the NLSs were found to be functional in the context of the full-length EBNA3B protein.


2003 ◽  
Vol 23 (3) ◽  
pp. 975-987 ◽  
Author(s):  
Odile Filhol ◽  
Arsenio Nueda ◽  
Véronique Martel ◽  
Delphine Gerber-Scokaert ◽  
Maria José Benitez ◽  
...  

ABSTRACT Protein kinase CK2 is a multifunctional enzyme which has long been described as a stable heterotetrameric complex resulting from the association of two catalytic (α or α′) and two regulatory (β) subunits. To track the spatiotemporal dynamics of CK2 in living cells, we fused its catalytic α and regulatory β subunits with green fluorescent protein (GFP). Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Imaging of stable cell lines expressing low levels of GFP-CK2α or GFP-CK2β revealed the existence of CK2 subunit subpopulations exhibiting differential dynamics. Once in the nucleus, they diffuse randomly at different rates. Unlike CK2β, CK2α can shuttle, showing the dynamic nature of the nucleocytoplasmic trafficking of the kinase. When microinjected in the cytoplasm, the isolated CK2 subunits are rapidly translocated into the nucleus, whereas the holoenzyme complex remains in this cell compartment, suggesting an intramolecular masking of the nuclear localization sequences that suppresses nuclear accumulation. However, binding of FGF-2 to the holoenzyme triggers its nuclear translocation. Since the substrate specificity of CK2α is dramatically changed by its association with CK2β, the control of the nucleocytoplasmic distribution of each subunit may represent a unique potential regulatory mechanism for CK2 activity.


2000 ◽  
Vol 278 (5) ◽  
pp. E825-E831 ◽  
Author(s):  
Aimee W. Kao ◽  
Chunmei Yang ◽  
Jeffrey E. Pessin

Previously, we reported that expression of a dominant-interfering neuronal-specific dynamin 1 (K44A/dynamin 1) inhibited the plasma membrane internalization of GLUT-4 in 3T3L1 adipocytes (15). To investigate the role of the ubiquitously expressed isoform of dynamin, dynamin 2, on adipocyte GLUT-4 internalization, and to determine whether dynamin splice variants have functional specificity, we expressed each of the four dynamin 2 isoforms (aa, ab, ba, and bb) as either wild-type proteins or GTPase-defective mutants. When expressed as enhanced green fluorescent protein (EGFP) fusions, these isoforms were found to have overlapping subcellular distributions being localized throughout the cell cytoplasm, on punctate vesicles and in a perinuclear compartment. This distribution was qualitatively similar to that of endogenous dynamin 2 and overlapped with GLUT-4 in the basal state. Expression of wild-type dynamin 2 isoforms had no effect on the basal or insulin-stimulated distribution of GLUT-4; however, expression of the dominant-interfering dynamin 2 mutants inhibited GLUT-4 endocytosis. These data demonstrate that dynamin 2 is required for GLUT-4 endocytosis in 3T3L1 adipocytes and suggest that, relative to GLUT-4 trafficking, the dynamin 2 splice variants have overlapping functions and are probably not responsible for mediating distinct GLUT-4 budding events.


Sign in / Sign up

Export Citation Format

Share Document