Imatinib Induced Re-Activation of FoxO3 Transcription Factor in CML Is Responsible for the Induction of a Quiescent Status of CD34 Leukaemic Progenitor Cells.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1090-1090
Author(s):  
Daniela Cilloni ◽  
Cristina Panuzzo ◽  
Francesca Messa ◽  
Francesca Arruga ◽  
Enrico Bracco ◽  
...  

Abstract The FoxO family of transcription factors is regulated by PI3K/Akt induced phosphorylation resulting in nuclear exclusion and degradation. Nuclear FoxO transcribes proapoptotic molecules and cell cycle inhibitors. In CML cells the TK activity of Bcr-Abl leads to the abnormal activation of downstream effectors including PI3K/Akt. The aim of this study was to investigate the role of FoxO3 in Bcr-Abl induced apoptotic arrest and cell growth and the effect of imatinib (IM) induced re-activation of FoxO3 activity in CML progenitor cells. BM cells were collected from 52 CML patients and 20 healthy donors. The expression level of FoxO3 was tested by RQ-PCR. The protein amount and localization was analyzed by Western blot and immunofluorescence, DNA binding activity was measured by EMSA. In addition, FoxO3 was analyzed in CML primary cells and CD34+ cells after IM incubation. Cell cycle and the expression levels of CD47, which has been demonstrated to increased during progression through the cell cycle and stem cell mobilization, was measured by FACS in CD34+ cell population. In addition K562 cells was transfected with pECE-FoxO3 to clarify FoxO3 effects on cell growth and apoptosis. Finally we used our already set up model of Drosophila melanogaster (Dm) transgenic for human Bcr-Abl to study the pathway leading to FoxO3 inactivation. We found that, despite either FoxO3 mRNA levels or protein amount are similar in CML cells compared to controls, FoxO3 protein is equally distributed in the nucleus and cytoplasm in controls but it is completely cytoplasmatic in CML cells and it enters the nucleus during in vivo IM treatment or in vitro IM incubation. Additionally, FoxO3 DNA binding activity in CML patients is completely absent at diagnosis and reappears after IM treatment. Moreover FoxO3 overexpression in transfected cells results into a 49±9 % reduction of proliferation which was further reduced of 75±5 % after IM incubation. Furthermore, we demonstrated that IM incubation results into the reactivation of FoxO3 in Ph+ CD34+ cells inducing quiescence into this population as demonstrated by the comparison of cell cycle kinetics and by a decreased expression of CD47. Finally, the progeny obtained from the crossbreeding of Bcr-Abl flies and flies transgenic for FoxO showed a rescue of FoxO phenotype demonstrating that FoxO inactivation is Bcr-Abl mediated. Overall, these in vitro and in vivo experiments suggest that FoxO3 is inactivated in CML cells and its delocalization is mainly dependant from Bcr-Abl activity. The antiproliferative activity of IM may be mediated by FoxO3 re-localization. On the other side, FoxO3 re-activation induced by IM results into a quiescence of Bcr-Abl CD34+ progenitor cells, which raises a hypothesis that FoxO3 could play a role in IM resistance. This investigation was conducted by CML Correlative Studies Network (CCSN), TOPS, which is sponsored by Novartis Oncology

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


2004 ◽  
Vol 85 (7) ◽  
pp. 2001-2013 ◽  
Author(s):  
Koen W. R. van Cleef ◽  
Wendy M. A. Scaf ◽  
Karen Maes ◽  
Suzanne J. F. Kaptein ◽  
Erik Beuken ◽  
...  

An intriguing feature of the rat cytomegalovirus (RCMV) genome is open reading frame (ORF) r127, which shows similarity to the rep genes of parvoviruses as well as the U94 genes of human herpesvirus type 6A (HHV-6A) and 6B (HHV-6B). Counterparts of these genes have not been found in other herpesviruses. Here, it is shown that the r127 gene is transcribed during the early and late phases of virus replication in vitro as an unspliced 1·1 kb transcript containing the complete r127 ORF. Transcripts of r127 were also detected in various organs of RCMV-infected rats at 1 week post-infection (p.i.), but only in the salivary gland at 4 months p.i. Using rabbit polyclonal antibodies raised against the r127-encoded protein (pr127), pr127 was found to be expressed as early as 12 h p.i. within the nuclei of RCMV-infected cells in vitro. Expression of pr127 was also observed within the nuclei of cells in various organs of RCMV-infected rats at 3 weeks p.i. Moreover, pr127 was demonstrated to bind single- as well as double-stranded DNA. Finally, an RCMV r127 deletion mutant (RCMVΔr127) was generated, in which the r127 ORF was disrupted. This deletion mutant, however, was shown to replicate with a similar efficiency as wild-type RCMV (wt RCMV), both in vitro and in vivo. Taken together, it is concluded that the RCMV r127 gene encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication, not only in vitro, but also during the acute phase of infection in vivo.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476 ◽  
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


2004 ◽  
Vol 3 (5) ◽  
pp. 1185-1197 ◽  
Author(s):  
Bidyottam Mittra ◽  
Dan S. Ray

ABSTRACT Crithidia fasciculata cycling sequence binding proteins (CSBP) have been shown to bind with high specificity to sequence elements present in several mRNAs that accumulate periodically during the cell cycle. The first described CSBP has subunits of 35.6 (CSBPA) and 42 kDa (CSBPB). A second distinct binding protein termed CSBP II has been purified from CSBPA null mutant cells, lacking both CSBPA and CSBPB proteins, and contains three major polypeptides with predicted molecular masses of 63, 44.5, and 33 kDa. Polypeptides of identical size were radiolabeled in UV cross-linking assays performed with purified CSBP II and 32P-labeled RNA probes containing six copies of the cycling sequence. The CSBP II binding activity was found to cycle in parallel with target mRNA levels during progression through the cell cycle. We have cloned genes encoding these three CSBP II proteins, termed RBP63, RBP45, and RBP33, and characterized their binding properties. The RBP63 protein is a member of the poly(A) binding protein family. Homologs of RBP45 and RBP33 proteins were found only among the kinetoplastids. Both RBP45 and RBP33 proteins and their homologs have a conserved carboxy-terminal half that contains a PSP1-like domain. All three CSBP II proteins show specificity for binding the wild-type cycling sequence in vitro. RBP45 and RBP33 are phosphoproteins, and RBP45 has been found to bind in vivo specifically to target mRNA containing cycling sequences. The levels of phosphorylation of both RBP45 and RBP33 were found to cycle during the cell cycle.


1995 ◽  
Vol 15 (10) ◽  
pp. 5552-5562 ◽  
Author(s):  
E Roulet ◽  
M T Armentero ◽  
G Krey ◽  
B Corthésy ◽  
C Dreyer ◽  
...  

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.


1993 ◽  
Vol 293 (3) ◽  
pp. 769-774 ◽  
Author(s):  
W W Zhang ◽  
M Yaneva

The Ku protein, a DNA-binding complex that is composed of two subunits of 70 kDa and of 86 kDa, has been suggested to play a role in gene transcription. The dependence of the in vitro DNA-binding activity of affinity-purified Ku protein on reduced cysteine residues has been studied using sulphydryl-modifying agents. Inhibition of the DNA-binding activity was caused by alkylation with N-ethylmaleimide and by crosslinking with azadicarboxylic acid bis(dimethylamide). Treatment of the protein with a large excess of N-ethylmaleimide after it had bound to DNA did not completely dissociate the complex from the DNA, suggesting that some cysteines may be in direct contact with DNA. Pre-incubation of the protein at 37 degrees C or above caused rapid inactivation of DNA binding. The elevated temperature azadicarboxylic acid bis(dimethylamide) treatments resulted in the formation of a crosslinked product, which was detected by Western blotting. The effects of azadicarboxylic acid bis(dimethylmaleimide) and heat were completely reversible by treatment with a reducing agent, such as dithiothreitol. These results demonstrate that in vitro DNA-binding activity of the Ku protein requires reduced sulphydryl groups. Interestingly, the DNA-binding activity of Ku protein was protected from heat inactivation by the presence of a HeLa cell nuclear extract, suggesting that a nuclear factor or factors may be responsible for the maintenance of the reduced cysteines of the Ku protein in vivo. Thus, the biochemical function of the Ku protein may be regulated through oxidation-reduction of its cysteine residues.


Sign in / Sign up

Export Citation Format

Share Document