scholarly journals ATM Activation and Its Recruitment to Damaged DNA Require Binding to the C Terminus of Nbs1

2005 ◽  
Vol 25 (13) ◽  
pp. 5363-5379 ◽  
Author(s):  
Zhongsheng You ◽  
Charly Chahwan ◽  
Julie Bailis ◽  
Tony Hunter ◽  
Paul Russell

ABSTRACT ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-β. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.

2007 ◽  
Vol 27 (19) ◽  
pp. 6852-6862 ◽  
Author(s):  
Aimin Peng ◽  
Andrea L. Lewellyn ◽  
James L. Maller

ABSTRACT In Xenopus laevis embryos, the midblastula transition (MBT) at the 12th cell division marks initiation of critical developmental events, including zygotic transcription and the abrupt inclusion of gap phases into the cell cycle. Interestingly, although an ionizing radiation-induced checkpoint response is absent in pre-MBT embryos, introduction of a threshold amount of undamaged plasmid or sperm DNA allows a DNA damage checkpoint response to be activated. We show here that undamaged threshold DNA directly participates in checkpoint signaling, as judged by several dynamic changes, including H2AX phosphorylation, ATM phosphorylation and loading onto chromatin, and Chk1/Chk2 phosphorylation and release from nuclear DNA. These responses on physically separate threshold DNA require γ-H2AX and are triggered by an ATM-dependent soluble signal initiated by damaged DNA. The signal persists in egg extracts even after damaged DNA is removed from the system, indicating that the absence of damaged DNA is not sufficient to end the checkpoint response. The results identify a novel mechanism by which undamaged DNA enhances checkpoint signaling and provide an example of how the transition to cell cycle checkpoint activation during development is accomplished by maternally programmed increases in the DNA-to-cytoplasm ratio.


2008 ◽  
Vol 82 (17) ◽  
pp. 8362-8372 ◽  
Author(s):  
Seema S. Lakdawala ◽  
Rachel A. Schwartz ◽  
Kevin Ferenchak ◽  
Christian T. Carson ◽  
Brian P. McSharry ◽  
...  

ABSTRACT Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.


2002 ◽  
Vol 158 (5) ◽  
pp. 863-872 ◽  
Author(s):  
Matthew P. Stokes ◽  
Ruth Van Hatten ◽  
Howard D. Lindsay ◽  
W. Matthew Michael

Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.


2011 ◽  
Vol 441 (1) ◽  
pp. 227-236 ◽  
Author(s):  
Xin Zhou ◽  
Ting-Ting Li ◽  
Xu Feng ◽  
Esther Hsiang ◽  
Yue Xiong ◽  
...  

RASSF1A [Ras association (RalGDS/AF-6) domain family member 1A] and RASSF1C are two ubiquitously expressed isoforms of the RASSF1 gene. The promoter of RASSF1A is frequently hypermethylated, resulting in inactivation in various human cancers. RASSF1A is implicated in the regulation of apoptosis, microtubule stability and cell cycle arrest. However, little is known about the regulation and function of RASSF1C. In the present study we show that exogenously expressed RASSF1C is a very unstable protein that is highly polyubiquitylated and degraded via the proteasome. Furthermore, RASSF1C degradation is enhanced when cells are exposed to stress signals, such as UV irradiation. Mule, a HECT (homologous with E6-associated protein C-terminus) family E3 ligase, but not SCFβ-TrCP [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box and β-TrCP is β-bransducin repeat-containing protein] or CUL4 (cullin 4)-DDB1 (damage-specific DNA-binding protein 1), is the E3 ligase for RASSF1C under normal conditions, whereas both Mule and SCFβ-TrCP target RASSF1C degradation in response to UV irradiation. GSK3 (glycogen synthase kinase 3) phosphorylates RASSF1C to promote RASSF1C degradation subsequently, which is negatively regulated by the PI3K (phosphoinositide 3-kinase)/Akt pathway. Thus the present study reveals a novel regulation of RASSF1C and the potentially important role of RASSF1C in DNA damage responses.


2021 ◽  
Vol 79 (4) ◽  
pp. 1517-1531
Author(s):  
Alejandra Martínez-Maldonado ◽  
Miguel Ángel Ontiveros-Torres ◽  
Charles R. Harrington ◽  
José Francisco Montiel-Sosa ◽  
Raúl García-Tapia Prandiz ◽  
...  

Background: Alzheimer’s disease (AD) and progressive supranuclear palsy (PSP) are examples of neurodegenerative diseases, characterized by abnormal tau inclusions, that are called tauopathies. AD is characterized by highly insoluble paired helical filaments (PHFs) composed of tau with abnormal post-translational modifications. PSP is a neurodegenerative disease with pathological and clinical heterogeneity. There are six tau isoforms expressed in the adult human brain, with repeated microtubule-binding domains of three (3R) or four (4R) repeats. In AD, the 4R:3R ratio is 1:1. In PSP, the 4R isoform predominates. The lesions in PSP brains contain phosphorylated tau aggregates in both neurons and glial cells. Objective: Our objective was to evaluate and compare the processing of pathological tau in PSP and AD. Methods: Double and triple immunofluorescent labeling with antibodies to specific post-translational tau modifications (phosphorylation, truncation, and conformational changes) and thiazin red (TR) staining were carried out and analyzed by confocal microscopy. Results: Our results showed that PSP was characterized by phosphorylated tau in neurofibrillary tangles (NFTs) and glial cells. Tau truncated at either Glu391 or Asp421 was not observed. Extracellular NFTs (eNFTs) and glial cells in PSP exhibited a strong affinity for TR in the absence of intact or phosphorylated tau. Conclusion: Phosphorylated tau was as abundant in PSP as in AD. The development of eNFTs from both glial cells and neuronal bodies suggests that truncated tau species, different from those observed in AD, could be present in PSP. Additional studies on truncated tau within PSP lesions could improve our understanding of the pathological processing of tau and help identify a discriminatory biomarker for AD and PSP.


2020 ◽  
Vol 117 (32) ◽  
pp. 19228-19236
Author(s):  
Chengcheng Fan ◽  
Jens T. Kaiser ◽  
Douglas C. Rees

The ATP-binding cassette (ABC) transporter of mitochondria (Atm1) mediates iron homeostasis in eukaryotes, while the prokaryotic homolog fromNovosphingobium aromaticivorans(NaAtm1) can export glutathione derivatives and confer protection against heavy-metal toxicity. To establish the structural framework underlying theNaAtm1 transport mechanism, we determined eight structures by X-ray crystallography and single-particle cryo-electron microscopy in distinct conformational states, stabilized by individual disulfide crosslinks and nucleotides. AsNaAtm1 progresses through the transport cycle, conformational changes in transmembrane helix 6 (TM6) alter the glutathione-binding site and the associated substrate-binding cavity. Significantly, kinking of TM6 in the post-ATP hydrolysis state stabilized by MgADPVO4eliminates this cavity, precluding uptake of glutathione derivatives. The presence of this cavity during the transition from the inward-facing to outward-facing conformational states, and its absence in the reverse direction, thereby provide an elegant and conceptually simple mechanism for enforcing the export directionality of transport byNaAtm1. One of the disulfide crosslinkedNaAtm1 variants characterized in this work retains significant glutathione transport activity, suggesting that ATP hydrolysis and substrate transport by Atm1 may involve a limited set of conformational states with minimal separation of the nucleotide-binding domains in the inward-facing conformation.


2005 ◽  
Vol 34 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Jacqueline Brodie ◽  
Iain J McEwan

The androgen receptor (AR) is a ligand-activated transcription factor that recognises and binds to specific DNA response elements upon activation by the steroids testosterone or dihydrotestosterone. In vitro, two types of response element have been characterised - non-selective elements that bind the androgen, glucocorticoid and progesterone receptors, and androgen receptor-selective sequences. In the present study, the allosteric effects of DNA binding on the receptor amino-terminal domain (NTD) were studied. Binding to both types of DNA response element resulted in changes in the intrinsic fluorescence emission spectrum for four tryptophan residues within the AR-NTD and resulted in a more protease-resistant conformation. In binding experiments, it was observed that the presence of the AR-NTD reduced the affinity of receptor polypeptides for binding to both selective and non-selective DNA elements derived from the probasin, PEM and prostatin C3 genes respectively, without significantly altering the protein–base pair contacts. Taken together, these results highlight the role of intra-domain communications between the AR-NTD and the DNA binding domain in receptor structure and function.


2006 ◽  
Vol 26 (10) ◽  
pp. 3824-3834 ◽  
Author(s):  
Huamin Zhou ◽  
Min Zheng ◽  
Jianming Chen ◽  
Changchuan Xie ◽  
Anand R. Kolatkar ◽  
...  

ABSTRACT Previous studies have revealed that transforming growth factor-β-activated protein kinase 1 (TAB1) interacts with p38α and induces p38α autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38α that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38α. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the φB+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38α is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38β (which does not bind to TAB1) revealed a previously unidentified locus of p38α comprising Thr218 and Ile275 that is essential for specific binding of p38α to TAB1. Converting either of these residues to the corresponding amino acid of p38β abolishes p38α interaction with TAB1. These p38α mutants still can be fully activated by p38α upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38α substrates and activators. This suggests that TAB1-induced autophosphorylation of p38α results from conformational changes that are similar but unique to those seen in p38α interactions with its substrates and activating kinases.


2017 ◽  
Vol 58 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Hui Zhou ◽  
Kasumi Kawamura ◽  
Hiromi Yanagihara ◽  
Junya Kobayashi ◽  
Qiu-Mei Zhang-Akiyama

Abstract Nijmegen breakage syndrome (NBS), a condition similar to Ataxia-Telangiectasia (A-T), is a radiation-hypersensitive genetic disorder showing chromosomal instability, radio-resistant DNA synthesis, immunodeficiency, and predisposition to malignances. The product of the responsible gene, NBS1, forms a complex with MRE11 and RAD50 (MRN complex). The MRN complex is necessary for the DNA damage–induced activation of ATM. However, the regulation of MRN complex formation is still unclear. Here, we investigated the regulatory mechanisms of MRN complex formation. We used an immunoprecipitation assay to determine whether levels of the MRN complex were increased by radiation-induced DNA damage and found that the levels of these proteins and their mRNAs did not increase. ATM-dependent phosphorylation of NBS1 contributed to the DNA damage–induced MRN complex formation. However, pre-treatment of cells with an ATM-specific inhibitor did not affect homologous recombination (HR) and non-homologous end-joining (NHEJ) repair. G0 phase cells, decreasing NBS1 and HR activity but not NHEJ, gained HR-related chromatin association of RAD51 by overexpression of NBS1, suggesting that the amount of NBS1 may be important for repressing accidental activation of HR. These evidences suggest that NBS1 is regulated by two kind of mechanisms: complex formation dependent on ATM, and protein degradation mediated by an unknown MG132-resistant pathway. Such regulation of NBS1 may contribute to cellular responses to double-strand breaks.


Sign in / Sign up

Export Citation Format

Share Document