scholarly journals Isolation and characterization of cloned DNA sequences containing ribosomal protein genes of Drosophila melanogaster.

1984 ◽  
Vol 4 (12) ◽  
pp. 2643-2652 ◽  
Author(s):  
D K Burns ◽  
B C Stark ◽  
M D Macklin ◽  
W Y Chooi

Ribosomal (r) proteins encoded by polyadenylated RNA were specifically precipitated in vitro from polysomes by using antibodies raised against characterized Drosophila melanogaster r proteins. The immuno-purified mRNA in the polysome complex was used to prepare cDNA with which to probe a D. melanogaster genomic library. Selected recombinant phages were used to hybrid select mRNAs, which were analyzed by in vitro translation. Three clones containing the genes for r proteins 7/8, S18, and L12 were positively identified by electrophoresis of the translation products in one-dimensional and two-dimensional polyacrylamide gels. Sequences encoding r proteins S18 and L12 were found to be present in the genome in single copies. In contrast, the polynucleotide containing the region encoding 7/8 may be repeated or may contain or be flanked by short repeated sequences. The sizes of mRNAs that hybridized to the recombinant clone containing 7/8 were significantly larger than would be expected from the molecular weight of protein 7/8, implying that there were unusually long 5' and 3' noncoding sequences. The mRNAs for r proteins S18 and L12 were however, only about 10% larger. In situ hybridizations to salivary gland polytene chromosomes, using the recombinant phage, revealed that the recombinant clone containing the gene for r protein 7/8 hybridized to 5D on the X chromosome; the recombinant clone containing the gene for S18 hybridized to 15B on the same chromosome, and the recombinant phage containing the gene for L12 hybridized to 62E on chromosome 3L. It is of interest that the genomic locations of all three r protein clones were within the chromosomal intervals known to contain the Minute mutations [M(1)0, M(1)30, and M(3)LS2]. Although each clone contained sequences specifying two to four proteins, none had more than one identifiable r protein gene, suggesting that different D. melanogaster r protein genes may not be closely linked.

1984 ◽  
Vol 4 (12) ◽  
pp. 2643-2652
Author(s):  
D K Burns ◽  
B C Stark ◽  
M D Macklin ◽  
W Y Chooi

Ribosomal (r) proteins encoded by polyadenylated RNA were specifically precipitated in vitro from polysomes by using antibodies raised against characterized Drosophila melanogaster r proteins. The immuno-purified mRNA in the polysome complex was used to prepare cDNA with which to probe a D. melanogaster genomic library. Selected recombinant phages were used to hybrid select mRNAs, which were analyzed by in vitro translation. Three clones containing the genes for r proteins 7/8, S18, and L12 were positively identified by electrophoresis of the translation products in one-dimensional and two-dimensional polyacrylamide gels. Sequences encoding r proteins S18 and L12 were found to be present in the genome in single copies. In contrast, the polynucleotide containing the region encoding 7/8 may be repeated or may contain or be flanked by short repeated sequences. The sizes of mRNAs that hybridized to the recombinant clone containing 7/8 were significantly larger than would be expected from the molecular weight of protein 7/8, implying that there were unusually long 5' and 3' noncoding sequences. The mRNAs for r proteins S18 and L12 were however, only about 10% larger. In situ hybridizations to salivary gland polytene chromosomes, using the recombinant phage, revealed that the recombinant clone containing the gene for r protein 7/8 hybridized to 5D on the X chromosome; the recombinant clone containing the gene for S18 hybridized to 15B on the same chromosome, and the recombinant phage containing the gene for L12 hybridized to 62E on chromosome 3L. It is of interest that the genomic locations of all three r protein clones were within the chromosomal intervals known to contain the Minute mutations [M(1)0, M(1)30, and M(3)LS2]. Although each clone contained sequences specifying two to four proteins, none had more than one identifiable r protein gene, suggesting that different D. melanogaster r protein genes may not be closely linked.


1987 ◽  
Vol 104 (1) ◽  
pp. 19-28 ◽  
Author(s):  
J Toffenetti ◽  
D Mischke ◽  
M L Pardue

A recombinant lambda-phage DNA clone containing Drosophila melanogaster sequences encoding the gene for myosin light chain (MLC) two has been isolated from a library of randomly sheared DNA. The Drosophila MLC2 gene is located in region 99E1-3 on the right arm of chromosome 3, several bands removed from the site reported for the other myosin light chain gene at 98B. The MLC2 sequence at 99E1-3 appears to encode all of the isoforms of Drosophila MLC2. The polypeptide encoded at 99E was identified as MLC2 by the following criteria: the in vitro translation product is identical in size to MLC2 isolated from Drosophila muscle, and on two-dimensional gels the in vitro translation product can be separated into two or more peptides that co-migrate with isoforms of larval and thoracic MLC2. RNA encoding the polypeptide was detected in embryos only after the onset of muscle differentiation and was also abundant in adult thoracic muscle. The nucleotide sequence of cDNA generated from late embryonic RNA would be translated to yield a protein sequence with multiple regions of homology to vertebrate MLC2. (There are shorter regions of homology to vertebrate MLC1). Like a number of vertebrate muscle proteins, Drosophila MLC2 has an acetylated amino-terminus.


1986 ◽  
Vol 103 (1) ◽  
pp. 1-11 ◽  
Author(s):  
B D Williams ◽  
D R Mitchell ◽  
J L Rosenbaum

Several flagellar dynein ATPase and radial spokehead genes have been isolated from a Chlamydomonas genomic expression library in lambda gt11. The library was probed with polyclonal and monoclonal antibodies raised against purified flagellar polypeptides, and recombinant phage giving positive signals were cloned. In vitro translation of mRNAs hybrid-selected by the cloned sequences from whole cell RNA provided confirmation of identity for three of the four clones. Evidence supporting the identification of the fourth, which encodes a dynein heavy chain, was provided by antibody selection; the fusion protein produced by this clone selected heavy chain-specific antibodies from a complex polyclonal antiserum recognizing many dynein determinants. One of the radial spoke sequences isolated here is of particular interest because it encodes the wild-type allele of a locus which was defined previously by temperature-sensitive paralyzed flagella mutation pf-26ts (Huang, B., G. Piperno, Z. Ramanis, and D. J. L. Luck, 1981, J. Cell Biol., 88:80-88). The cloned sequence was used to hybrid-select mRNA from mutant pf-26ts cells, and when translated in vitro, the selected mRNA produced a mutant spokehead polypeptide with an altered electrophoretic mobility. This confirms that the pf-26ts mutation alters the primary structure of a radial spokehead polypeptide. To quantify spokehead and dynein mRNAs during flagellar regeneration, all of the cloned sequences were used as hybridization probes in RNA dot experiments. Levels increased rapidly and coordinately after deflagellation, peaked 3-10-fold above nondeflagellated controls, and then returned to control values within 2 h. This accumulation pattern was similar to that of flagellar alpha-tubulin mRNA.


2000 ◽  
Vol 182 (7) ◽  
pp. 2026-2032 ◽  
Author(s):  
Christian Tendeng ◽  
Cyril Badaut ◽  
Evelyne Krin ◽  
Pierre Gounon ◽  
Saravuth Ngo ◽  
...  

ABSTRACT During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and inSalmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with anhns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. ThevicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. choleraewild-type strain expressing a vicHΔ92 gene lacking its 3′ end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.


1987 ◽  
Vol 244 (2) ◽  
pp. 359-366 ◽  
Author(s):  
C Hall ◽  
C M Lowndes ◽  
T K Leung ◽  
D N Cooper ◽  
A M Goate ◽  
...  

Translation in vitro of membrane-bound polyribosomal mRNAs from rat brain has shown several to be developmentally regulated [Hall & Lim (1981) Biochem. J. 196, 327-336]. Here we describe the isolation and characterization of cDNAs corresponding to two such brain mRNAs. One cDNA (M444) hybrid-selected a 0.95 kb mRNA directing the synthesis in vitro of a 21 kDa pI-6.3 polypeptide, which was processed in vitro by microsomal membranes. A second cDNA (M1622) hybridized to a 2.2 kb mRNA directing the synthesis of a 55 kDa pI-5.8 polypeptide. Both mRNAs were specific to membrane-bound polyribosomes. Restriction maps of the corresponding genomic DNA sequences are consistent with both being single copy. The two mRNAs were present in astrocytic and neuronal cultures, but not in liver or spleen or in neuroblastoma or glioma cells. The two mRNAs were differently regulated during brain development. In the developing forebrain there was a gradual and sustained increase in M444 mRNA during the first 3 weeks post partum, whereas M1622 mRNA appeared earlier and showed no further increase after day 10. In the cerebellum the developmental increase in M444 mRNA was biphasic. After a small initial increase there was a decrease in this mRNA at day 10, coincident with high amounts of M1622 mRNA. This was followed by a second, larger, increase in M444 mRNA, when amounts of M1622 mRNA were constant. The contrasting changes in these two mRNAs in the developing cerebellum are of particular interest, since they occur during an intensive period of cell proliferation, migration and altering neural connectivity. As these mRNAs are specific to differentiated neural tissue, they represent useful molecular markers for studying brain differentiation.


1987 ◽  
Vol 7 (10) ◽  
pp. 3386-3393 ◽  
Author(s):  
M Ittmann ◽  
A Greco ◽  
C Basilico

We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.


1990 ◽  
Vol 10 (3) ◽  
pp. 910-917 ◽  
Author(s):  
F Quan ◽  
M A Forte

G proteins are responsible for modulating the activity of intracellular effector systems in response to receptor activation. The stimulatory G protein Gs is responsible for activation of adenylate cyclase in response to a variety of hormonal signals. In this report, we describe the structure of the gene for the alpha subunit of Drosophila melanogaster Gs. The gene is approximately 4.5 kilobases long and is divided into nine exons. The exon-intron structure of the Drosophila gene shows substantial similarity to that of the human gene for Gs alpha. Alternate splicing of intron 7, involving either use of an unusual TG or consensus AG 3' splice site, results in transcripts which code for either a long (DGs alpha L) or short (DGs alpha S) form of Gs alpha. These subunits differ by inclusion or deletion of three amino acids and substitution of a Ser for a Gly. The two forms of Drosophila Gs alpha differ in a region where no variation in the primary sequence of vertebrate Gs alpha subunits has been observed. In vitro translation experiments demonstrated that the Drosophila subunits migrate anomalously on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 51,000 and 48,000. Additional Gs alpha transcript heterogeneity reflects the use of multiple polyadenylation sites.


Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 287-310
Author(s):  
Theodore R F Wright ◽  
Glenn C Bewley ◽  
Allen F Sherald

ABSTRACT Of 84 lethals isolated over the dopa decarboxylase (DDC) deficiency Df(2L)50, 8 have been identified as DDC-deficient alleles on the basis of their effect on DDC activity when heterozygous over the CyO balancer chromosome with activities ranging from 28% to 53% of controls. Some of the Ddc-deficient alleles exhibit intracistronic complementation. Most of the complementing pairs of alleles are much reduced in viability, e.g. < 5% of expected, and express a common syndrome of mutant phenes which can reasonably be inferred to derive from inadequately sclerotinized cuticle. Individuals heterozygous for the noncomplementing allele, Ddcn7, over the 12-band DDC deficiency, Df(2L)130, die at the end of embryogenesis as unhatched larvae with unpigmented mouth parts. The Ddc alleles and the l(2)amd α-methyl dopa (αMD) hypersensitive alleles are both located within the 11 band region 37B10-C7. The l(2)amd locus is immediately to the right of hk(2-53.9).Ddc has been mapped within 0.004 Map Units to the right of l(2)amd with a maximum estimated recombination frequency of 0.01%. None of the Ddc/CyO strains are sensitive to the dietary administration of α-methyl dopa (αMD), and complementation occurs between the Ddc deficient alleles and the l(2)amd alleles both on the basis of viability and DDC activity. No effect on DDC by the amd alleles has been found to date. Even in the complementing heterozygote, amdH1/amdH89, the level of activity, thermostability, and in vitro αMD inhibition of DDC remains unaffected. Although no biochemical phene has yet been established for the αMD hypersensitive amd alleles, it seems likely that the two groups of mutants are functionally related.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Alisha Schlichter ◽  
Margaret M Kasten ◽  
Timothy J Parnell ◽  
Bradley R Cairns

SWI/SNF-family chromatin remodeling complexes, such as S. cerevisiae RSC, slide and eject nucleosomes to regulate transcription. Within nucleosomes, stiff DNA sequences confer spontaneous partial unwrapping, prompting whether and how SWI/SNF-family remodelers are specialized to remodel partially-unwrapped nucleosomes. RSC1 and RSC2 are orthologs of mammalian PBRM1 (polybromo) which define two separate RSC sub-complexes. Remarkably, in vitro the Rsc1-containing complex remodels partially-unwrapped nucleosomes much better than does the Rsc2-containing complex. Moreover, a rsc1Δ mutation, but not rsc2Δ, is lethal with histone mutations that confer partial unwrapping. Rsc1/2 isoforms both cooperate with the DNA-binding proteins Rsc3/30 and the HMG protein, Hmo1, to remodel partially-unwrapped nucleosomes, but show differential reliance on these factors. Notably, genetic impairment of these factors strongly reduces the expression of genes with wide nucleosome-deficient regions (e.g., ribosomal protein genes), known to harbor partially-unwrapped nucleosomes. Taken together, Rsc1/2 isoforms are specialized through composition and interactions to manage and remodel partially-unwrapped nucleosomes.


1987 ◽  
Vol 7 (10) ◽  
pp. 3386-3393
Author(s):  
M Ittmann ◽  
A Greco ◽  
C Basilico

We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.


Sign in / Sign up

Export Citation Format

Share Document