Low plasma concentrations of retinol-binding protein in individuals with mutations affecting position 84 of the transthyretin molecule

1995 ◽  
Vol 41 (9) ◽  
pp. 1288-1291 ◽  
Author(s):  
R P Waits ◽  
T Yamada ◽  
T Uemichi ◽  
M D Benson

Abstract Retinol-binding protein (RBP), the principal carrier for vitamin A, is known to form a complex with transthyretin (TTR) for transport in plasma. Individuals from a kindred with the amino acid substitution of serine for isoleucine at position 84 (Ser84) of the TTR molecule show substantial reduction in plasma concentrations of RBP. In the present study, we measured plasma RBP in individuals from several kindreds, demonstrating 17 different point mutations within the TTR gene. In each case, these mutations caused single amino acid substitutions at various positions throughout the TTR molecule. Of all the individuals examined, only those with mutations causing amino acid substitutions at position 84 of the TTR molecule (Ser84 and Asn84) demonstrated substantial decreases in plasma concentrations of RBP. These results suggest that the isoleucine at position 84 on the TTR molecule may be critically involved in mediating RBP binding. Further, these findings demonstrate the importance of considering TTR gene mutations when clinically evaluating patients with low RBP.

1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480 ◽  
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


1980 ◽  
Vol 43 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Suzanne Large ◽  
G. Neal ◽  
J. Glover ◽  
O. Thanangkul ◽  
R. E. Olson

1. Changes in total retinol-binding protein (RBP), the holoprotein (holoRBP) and prealbumin (PA) concentrations have been monitored in plasma of thirty protein- and vitamin A-deficient preschool children from within a few hours up to 7 weeks after treatment with retinol and a good-quality protein diet.2. The children were classified into groups according to nutritional status as having either kwashiorkor, marasmus-kwashiorkor or marasmus, and given formula diets whose protein and energy contents increased stepwise from 1 g and 105 kJ/kg body-weight respectively up to 4 g and 733 kJ/kg body-weight after 4 weeks. Retinol was administered in the forms of retinyl palmitate either orally or intramuscularly.3. PA and total RBP were determined by electroimmunoassay procedures and the holoRBP by its fluorescence after separation from other plasma proteins.4. RBP in plasma of the vitamin A-deficient child is largely denatured and incapable of binding administered retinol, which must first be taken up by the liver before native holoRBP is released. An increased pool of native apoprotein accumulates in the liver during vitamin A deficiency which is released into plasma quickly after retinol uptake to form peak concentrations of total and holoRBP approximately 3 h after dosing intramuscularly and 6 h orally.5. The accumulated pool of RBP was highest in livers from the marasmus group and lowest in those from the kwashiorkor group, reflecting their relative capacities to synthesize plasma proteins.6. The mean plasma concentrations of total and holoRBP for the various groups were minimal 24–48 h after dosing with retinol and then improved almost linearly over the following week.7. Mean plasma PA concentrations of the various groups on admission were also in order of the severity of their malnutrition. There was little or no change in this protein concentration over the first 24 h after dosing with retinol, but thereafter the mean values rose almost linearly over 2 weeks. Albumin on the other hand changed little during the first week. The results show that PA is the more sensitive measurement of protein nutritional status.


1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Tsuyoshi Yamada ◽  
Mari Maeda ◽  
Mohamed Mahdi Alshahni ◽  
Reiko Tanaka ◽  
Takashi Yaguchi ◽  
...  

ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains.


2003 ◽  
Vol 47 (12) ◽  
pp. 3890-3900 ◽  
Author(s):  
Regina Leber ◽  
Sandra Fuchsbichler ◽  
Vlasta Klobučníková ◽  
Natascha Schweighofer ◽  
Eva Pitters ◽  
...  

ABSTRACT Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


Sign in / Sign up

Export Citation Format

Share Document