Naturally occurring methylation inhibitor: DNA hypomethylation and hemoglobin synthesis in human K562 cells

1987 ◽  
Vol 7 (5) ◽  
pp. 1759-1763
Author(s):  
S B Lyon ◽  
L Buonocore ◽  
M Miller

A naturally occurring methylation inhibitor isolated from rabbit liver and named methinin inhibits a number of methyltransferases. Methinin is a low-molecular-weight compound (1,400) that has an active amine group. This compound inhibits the DNA methyltransferase of human erythroleukemia cells (K562) in vitro. When the K562 cells were grown in medium containing methinin, fetal hemoglobin was produced. Small but detectable amounts of adult hemoglobin were also produced. Methinin was not toxic to these cells. The overall rate of genomic DNA methylation was reduced by 60% in cells grown in medium containing methinin. Southern blots of genomic DNA from methinin-treated cells and untreated cells hybridized to a 32P-labeled globin gene probe showed that one site in the globin gene region was hypomethylated. Methinin is a naturally occurring compound which inhibits DNA methylation both in vitro and in vivo.

1987 ◽  
Vol 7 (5) ◽  
pp. 1759-1763 ◽  
Author(s):  
S B Lyon ◽  
L Buonocore ◽  
M Miller

A naturally occurring methylation inhibitor isolated from rabbit liver and named methinin inhibits a number of methyltransferases. Methinin is a low-molecular-weight compound (1,400) that has an active amine group. This compound inhibits the DNA methyltransferase of human erythroleukemia cells (K562) in vitro. When the K562 cells were grown in medium containing methinin, fetal hemoglobin was produced. Small but detectable amounts of adult hemoglobin were also produced. Methinin was not toxic to these cells. The overall rate of genomic DNA methylation was reduced by 60% in cells grown in medium containing methinin. Southern blots of genomic DNA from methinin-treated cells and untreated cells hybridized to a 32P-labeled globin gene probe showed that one site in the globin gene region was hypomethylated. Methinin is a naturally occurring compound which inhibits DNA methylation both in vitro and in vivo.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1174-1177 ◽  
Author(s):  
Michel Herranz ◽  
Juan Martín-Caballero ◽  
Mario F. Fraga ◽  
Jesús Ruiz-Cabello ◽  
Juana Maria Flores ◽  
...  

AbstractGene silencing by CpG island promoter hypermethylation has awakened the interest for DNA demethylating agents as chemotherapy drugs. Zebularine (1-[β-D-ribofuranosil]-1,2-dihydropyrimidin-2-1) has been recently described as a new DNA methylation inhibitor. Here we have studied its effects in a mouse model of radiation-induced lymphomagenesis using nuclear magnetic resonance (NMR) and positron emission tomography (PET). All control animals presented large thymic T lymphomas and died between 4 and 5.5 months. In contrast, 40% (12 of 30) of zebularine-treated animals were still alive after 1 year (Kaplan-Meier P < .001). NMR and PET imaging showed that surviving animals presented a thymus structure/volume similar to normal mice of the same age. Most important, zebularine demonstrated a complete lack of toxicity in nonirradiated control mice. DNA hypomethylation induced by zebularine occurred in association with depletion in extractable DNA methyltransferase 1 protein. Thus, our data support the role of zebularine as a DNA demethylating agent with antitumor activity and little toxicity.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Alex Sotolongo ◽  
Yi-Zhou Jiang ◽  
John Karanian ◽  
William Pritchard ◽  
Peter Davies

Objective: One of the first clinically detectable changes in the vasculature during atherogenesis is the accumulation of cholesterol within the vessel wall. Hypercholesterolemia is characterized by dysfunctional endothelial-dependent vessel relaxation and impaired NOS3 function. Since DNA methylation at gene promoter regions strongly suppresses gene expression, we postulated that high-fat/high-cholesterol diet suppresses endothelial NOS3 through promoter DNA methylation. Methods: Domestic male pigs were fed control diet (CD) or isocaloric high fat and high cholesterol diet (HC; 12% fat and 1.5% cholesterol) for 2, 4, 8 or 12 weeks prior to tissue collection. Furthermore, to determine the effects of risk factor withdrawal, an additional group of swine received HC for 12 weeks and then CD for 8 weeks; a control group received HC continuously for 20 weeks. Endothelial cells were harvested from common carotid aorta. In parallel in vitro studies, cultured human aortic endothelial cells (HAEC) were treated with human LDL, GW3956 (LXR agonist) and RG108 (DNA methyltransferase [DNMT] inhibitor). In cells from both sources, DNA methylation at the NOS3 promoter was measured using methylation specific pyro sequencing, and endothelial gene expression was measured using RT PCR. Results: HC diet increased plasma cholesterol level from 75 mg/dl on CD to a plateau of about 540 mg/dl within 2 weeks. Endothelial NOS3 expression was significantly reduced (71±9 % of CD) after 4 weeks of HC, a level sustained at subsequent time points. Withdrawal of HC for 8 weeks did not recover NOS3 expression. After 12-week HC, the NOS3 promoter was hypermethylated. Withdrawal of HC did not reverse NOS3 promoter methylation. In vitro treatment of HAEC with human LDL (200 mg/dl total cholesterol) or GW3956 (5μM) suppressed NOS3 mRNA to 50% and 30% respectively, suggesting that LXR/RXR is involved in suppression of NOS3. Nitric oxide production was consistently suppressed by GW3959. Both could be reversed through inhibition of DNMTs by RG108. Conclusions: DNA methylation and LXR/RXR pathway can mediate the HC-suppression of endothelial NOS3. The study identifies novel pharmaceutical targets in treating endothelial dysfunction. Crosstalk between these pathways is under investigation.


Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 1045-1053 ◽  
Author(s):  
Sebastiaan van Zalen ◽  
Grace R. Jeschke ◽  
Elizabeth O. Hexner ◽  
J. Eric Russell

Abstract The normal accumulation of β-globin protein in terminally differentiating erythroid cells is critically dependent on the high stability of its encoding mRNA. The molecular basis for this property, though, is incompletely understood. Factors that regulate β-globin mRNA within the nucleus of early erythroid progenitors are unlikely to account for the constitutively high half-life of β-globin mRNA in the cytoplasm of their anucleate erythroid progeny. We conducted in vitro protein-RNA binding analyses that identified a cytoplasm-restricted β-globin messenger ribonucleoprotein (mRNP) complex in both cultured K562 cells and erythroid-differentiated human CD34+ cells. This novel mRNP targets a specific guanine-rich pentanucleotide in a region of the β-globin 3′untranslated region that has recently been implicated as a determinant of β-globin mRNA stability. Subsequent affinity-enrichment analyses identified AUF-1 and YB-1, 2 cytoplasmic proteins with well-established roles in RNA biology, as trans-acting components of the mRNP. Factor-depletion studies conducted in vivo demonstrated the importance of the mRNP to normal steady-state levels of β-globin mRNA in erythroid precursors. These data define a previously unrecognized mechanism for the posttranscriptional regulation of β-globin mRNA during normal erythropoiesis, providing new therapeutic targets for disorders of β-globin gene expression.


2014 ◽  
Vol 26 (1) ◽  
pp. 175 ◽  
Author(s):  
M. D. Snyder ◽  
J. H. Pryor ◽  
M. D. Peoples ◽  
G. L. Williamson ◽  
M. C. Golding ◽  
...  

During early bovine embryogenesis, the regular establishment of DNA methylation and histone modification patterns is essential for proper gene expression and continuation of embryonic development. Epigenome patterns established during this period, if improperly maintained, can lead to developmental anomalies and may partially explain the lower pregnancy rates of in vitro-produced embryos. We hypothesised that the suppression of translation of the genes euchromatic histone-lysine N-methyltransferase 2 (EHMT2), DNA methyltransferase 3A (DNMT3A), absent, small, or homeotic-like (ASH2L), and SET domain, bifurcated 1 (SETDB1) would provide insightful information on the importance of these genes during early embryonic development in an in vitro setting. In order to define the roles of these genes, small interfering RNA (siRNA) targeting the gene of interest were synthesised and target verified in bovine cell culture using quantitative real-time RT-PCR (RT-qPCR). We acquired matured bovine oocytes from commercial suppliers, followed by IVF by standard laboratory procedures. Eighteen hours post IVF, cumulus cells were removed and zygotes separated into 3 different treatment groups: non-injected controls (CNTL), non-targeting siRNA injected controls (siNULL), and injection with siRNA targeting the gene of interest (si “gene target”). Each siRNA was mixed with a green fluorescent dextran at a concentration of 20 μM and ~100 pL injected cytoplasmically. The green fluorescent dextran was used to give visual confirmation that zygotes were indeed injected. Post-injection, fluorescent embryos were separated and cultured in Bovine Evolve (Zentih Biotech) medium supplemented with 4 mg mL–1 of BSA (Probumin, Millipore). Cleavage rates were monitored on Day 2, and only cleaved embryos were cultured further. On Day 8 post-IVF, embryos were morphologically examined and numbers of blastocysts recorded. Mean development rates between siNULL and targeting siRNA were compared using a t-test statistic. Over the course of these experiments the mean blastocyst rate for CNTL zygotes was 34.5% ± 2.6 s.e.m. (n = 1647). None of the zygotes injected with siEHMT2 (n = 1184) or siSETDB1 (n = 361) reached the blastocyst stage and these rates differed from the siNULL rate (21.0% ± 2.5 s.e.m., n = 1587; P < 0.05). Morphologically, embryos from both groups developed to the morula stage before they exhibited fragmentation. Injection of siDNMT3A also resulted in significant loss of viability at the 8-cell stage and few zygotes injected (n = 1057) developed to blastocyst (2.1% ± 0.5 s.e.m.; P < 0.001). Inhibiting gene expression of ASH2L showed little variation in blastocyst rate from our siNULL embryos (31.3% ± 2.0 s.e.m., n = 466 v. 34.8% ± 1.9 s.e.m., n = 418, respectively, P > 0.2). It is unknown at this time if inhibition of ASH2L translation will have effects later in development. Ongoing experiments analysing DNA methylation and histone modifications through immunocytochemistry and global gene expression via RT-qPCR will further explore the establishment and maintenance of these genes in the embryonic epigenome.


2004 ◽  
Vol 24 (3) ◽  
pp. 1270-1278 ◽  
Author(s):  
Jonathan C. Cheng ◽  
Daniel J. Weisenberger ◽  
Felicidad A. Gonzales ◽  
Gangning Liang ◽  
Guo-Liang Xu ◽  
...  

ABSTRACT During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Recently, we reported that zebularine [1-(β-d-ribofuranosyl)-1,2-dihydropyrimidin-2-one] acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. Here we show that continuous application of zebularine to T24 cells induces and maintains p16 gene expression and sustains demethylation of the 5′ region for over 40 days, preventing remethylation. In addition, continuous zebularine treatment effectively and globally demethylated various hypermethylated regions, especially CpG-poor regions. The drug caused a complete depletion of extractable DNA methyltransferase 1 (DNMT1) and partial depletion of DNMT3a and DNMT3b3. Last, sequential treatment with 5-aza-2′-deoxycytidine followed by zebularine hindered the remethylation of the p16 5′ region and gene resilencing, suggesting the possible combination use of both drugs as a potential anticancer regimen.


Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1343-1352 ◽  
Author(s):  
Rodwell Mabaera ◽  
Christine A. Richardson ◽  
Kristin Johnson ◽  
Mei Hsu ◽  
Steven Fiering ◽  
...  

AbstractThe mechanisms underlying the human fetal-to-adult β-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human γ- and β-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at −162 of the γ promoter and −126 of the β promoter are hypomethylated in ABM and FL, respectively. We also studied γ-globin promoter methylation during in vitro differentiation of erythroid cells. The γ promoters are initially hypermethylated in CD34+ cells. The upstream γ promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient γ-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human γ- and β-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human β-globin locus gene switching.


2005 ◽  
Vol 23 (17) ◽  
pp. 3897-3905 ◽  
Author(s):  
Wolfram E. Samlowski ◽  
Sancy A. Leachman ◽  
Mark Wade ◽  
Pamela Cassidy ◽  
Patricia Porter-Gill ◽  
...  

Purpose The nucleoside analog 5-aza-2′-deoxycytidine (5-aza-CdR, decitabine) is a potent inhibitor of DNA methylation in vitro. Cellular treatment with this agent induces the re-expression of methylation-silenced genes. It remains unclear to what extent this compound inhibits DNA methylation in vivo. A clinical study was designed to examine the molecular effects and toxicity of a continuous 1-week intravenous infusion of decitabine in solid tumor patients. Methods Ten patients with refractory solid tumors were included in this study. Decitabine was administered at 2 mg/m2/d via continuous infusion for 168 hours. Quantitative polymerase chain reaction and high performance liquid chromatography were utilized to measure promoter-specific and global DNA methylation in peripheral-blood cells before and after treatment. Results Transient grade III/IV neutropenia (two patients) and grade II thrombocytopenia (one patient) was observed at the lowest planned dose step (2 mg/m2/d for 7 days). Nonhematologic toxicities were not observed. Quantitative polymerase chain reaction demonstrated significant MAGE-1 promoter hypomethylation by 14 days after the start of treatment in all 13 treatment cycles examined. Significant genomic DNA hypomethylation was also seen by day 14 in 11 of 13 treatment cycles analyzed. Genomic DNA methylation reverted to baseline levels by 28 to 35 days after the start of treatment, demonstrating that inhibition of DNA methylation by decitabine is transient. Conclusion A 168-hour continuous infusion of decitabine is well tolerated and results in the inhibition of promoter-specific and genomic DNA methylation in vivo. This treatment schedule is suitable for evaluation of decitabine in combination with agents whose activity may be enhanced by the reversal of DNA methylation–mediated gene silencing.


2001 ◽  
Vol 183 (3) ◽  
pp. 921-927 ◽  
Author(s):  
Georgina Macintyre ◽  
C. Victoria Atwood ◽  
Claire G. Cupples

ABSTRACT Deoxycytosine methylase (Dcm) enzyme activity causes mutagenesis in vitro either directly by enzyme-induced deamination of cytosine to uracil in the absence of the methyl donor,S-adenosylmethionine (SAM), or indirectly through spontaneous deamination of [5-methyl]cytosine to thymine. Using a Lac reversion assay, we investigated the contribution of the first mechanism to Dcm mutagenesis in vivo by lowering the levels of SAM.Escherichia coli SAM levels were lowered by reducing SAM synthetase activity via the introduction of a metK84 allele or by hydrolyzing SAM using the bacteriophage T3 SAM hydrolase. ThemetK84 strains exhibited increased C-to-T mutagenesis. Expression of the T3 SAM hydrolase gene, under the control of the arabinose-inducible PBAD promoter, effectively reduced Dcm-mediated genomic DNA methylation. However, increased mutagenesis was not observed until extremely high arabinose concentrations were used, and genome methylation at Dcm sites was negligible.


Sign in / Sign up

Export Citation Format

Share Document