scholarly journals Continuous Zebularine Treatment Effectively Sustains Demethylation in Human Bladder Cancer Cells

2004 ◽  
Vol 24 (3) ◽  
pp. 1270-1278 ◽  
Author(s):  
Jonathan C. Cheng ◽  
Daniel J. Weisenberger ◽  
Felicidad A. Gonzales ◽  
Gangning Liang ◽  
Guo-Liang Xu ◽  
...  

ABSTRACT During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Recently, we reported that zebularine [1-(β-d-ribofuranosyl)-1,2-dihydropyrimidin-2-one] acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. Here we show that continuous application of zebularine to T24 cells induces and maintains p16 gene expression and sustains demethylation of the 5′ region for over 40 days, preventing remethylation. In addition, continuous zebularine treatment effectively and globally demethylated various hypermethylated regions, especially CpG-poor regions. The drug caused a complete depletion of extractable DNA methyltransferase 1 (DNMT1) and partial depletion of DNMT3a and DNMT3b3. Last, sequential treatment with 5-aza-2′-deoxycytidine followed by zebularine hindered the remethylation of the p16 5′ region and gene resilencing, suggesting the possible combination use of both drugs as a potential anticancer regimen.

Author(s):  
Kento Wada ◽  
Tomofumi Misaka ◽  
Tetsuro Yokokawa ◽  
Yusuke Kimishima ◽  
Takashi Kaneshiro ◽  
...  

Background Blood‐based DNA methylation patterns are linked to types of diseases. FKBP prolyl isomerase 5 (FKBP5), a protein cochaperone, is known to be associated with the inflammatory response, but the regulatory mechanisms by leukocyte FKBP5 DNA methylation in patients with dilated cardiomyopathy (DCM) remain unclear. Methods and Results The present study enrolled patients with DCM (n=31) and age‐matched and sex‐matched control participants (n=43). We assessed FKBP5 CpG (cytosine‐phosphate‐guanine) methylation of CpG islands at the 5′ side as well as putative promoter regions by methylation‐specific quantitative polymerase chain reaction using leukocyte DNA isolated from the peripheral blood. FKBP5 CpG methylation levels at the CpG island of the gene body and the promoter regions were significantly decreased in patients with DCM. Leukocyte FKBP5 and IL‐1β (interleukin 1β) mRNA expression levels were significantly higher in patients with DCM than in controls. The protein expressions of DNMT1 (DNA methyltransferase 1) and DNMT3A (DNA methyltransferase 3A) in leukocytes were significantly reduced in patients with DCM. In vitro methylation assay revealed that FKBP5 promoter activity was inhibited at the methylated conditions in response to immune stimulation, suggesting that the decreased FKBP5 CpG methylation was functionally associated with elevation of FKBP5 mRNA expressions. Histological analysis using a mouse model with pressure overload showed that FKBP5‐expressing cells were substantially infiltrated in the myocardial interstitium in the failing hearts, indicating a possible role of FKBP5 expressions of immune cells in the cardiac remodeling. Conclusions Our findings demonstrate a link between specific CpG hypomethylation of leukocyte FKBP5 and DCM. Blood‐based epigenetic modification in FKBP5 may be a novel molecular mechanism that contributes to the pathogenesis of DCM.


2014 ◽  
Vol 46 (7) ◽  
pp. 245-255 ◽  
Author(s):  
Pankaj Chaturvedi ◽  
Anuradha Kalani ◽  
Srikanth Givvimani ◽  
Pradip Kumar Kamat ◽  
Anastasia Familtseva ◽  
...  

The mechanisms of homocysteine-mediated cardiac threats are poorly understood. Homocysteine, being the precursor to S-adenosyl methionine (a methyl donor) through methionine, is indirectly involved in methylation phenomena for DNA, RNA, and protein. We reported previously that cardiac-specific deletion of N-methyl-d-aspartate receptor-1 (NMDAR1) ameliorates homocysteine-posed cardiac threats, and in this study, we aim to explore the role of NMDAR1 in epigenetic mechanisms of heart failure, using cardiomyocytes during hyperhomocysteinemia (HHcy). High homocysteine levels activate NMDAR1, which consequently leads to abnormal DNA methylation vs. histone acetylation through modulation of DNA methyltransferase 1 (DNMT1), HDAC1, miRNAs, and MMP9 in cardiomyocytes. HL-1 cardiomyocytes cultured in Claycomb media were treated with 100 μM homocysteine in a dose-dependent manner. NMDAR1 antagonist (MK801) was added in the absence and presence of homocysteine at 10 μM in a dose-dependent manner. The expression of DNMT1, histone deacetylase 1 (HDAC1), NMDAR1, microRNA (miR)-133a, and miR-499 was assessed by real-time PCR as well as Western blotting. Methylation and acetylation levels were determined by checking 5′-methylcytosine DNA methylation and chromatin immunoprecipitation. Hyperhomocysteinemic mouse models (CBS+/−) were used to confirm the results in vivo. In HHcy, the expression of NMDAR1, DNMT1, and matrix metalloproteinase 9 increased with increase in H3K9 acetylation, while HDAC1, miR-133a, and miR-499 decreased in cardiomyocytes. Similar results were obtained in heart tissue of CBS+/− mouse. High homocysteine levels instigate cardiovascular remodeling through NMDAR1, miR-133a, miR-499, and DNMT1. A decrease in HDAC1 and an increase in H3K9 acetylation and DNA methylation are suggestive of chromatin remodeling in HHcy.


Author(s):  
Judit Vágó ◽  
Katalin Kiss ◽  
Edina Karanyicz ◽  
Roland Takács ◽  
Csaba Matta ◽  
...  

The aim of this study was to investigate the role of DNA methylation in the regulation of in vitro and in vivo cartilage formation. Based on the data of an RNA chip-assay performed on chondrifying BMP2-overexpressing C3H10T1/2 cells, the relative expression of Tet1 (tet methylcytosine dioxygenase 1), Dnmt3a (DNA methyltransferase 3) and Ogt (O-linked N-acetylglucosamine transferase) genes was examined with RT-qPCR in mouse cell-line based and primary micromass cultures. RNA probes for in situ hybridization were used on frozen sections of 15-day-old mouse embryos. DNA methylation was inhibited with 5-azacytidine during culturing. We found very strong but gradually decreasing expression of Tet1 throughout the entire course of in vitro cartilage differentiation along with strong signals in the cartilaginous embryonic skeleton. Dnmt3a and Ogt expressions did not show significant changes with RT-qPCR and gave weak in situ hybridization signals. Inhibition of DNA methylation applied during early stages of differentiation reduced cartilage-specific gene expression and cartilage formation. In contrast, it had stimulatory effect when added to differentiated chondrocytes. Our results indicate that the DNA demethylation-inducing Tet1 is a significant epigenetic factor of chondrogenesis, and inhibition of DNA methylation exerts distinct effects in different phases of in vitro cartilage formation.


2020 ◽  
Author(s):  
Xiaoxue Jiang ◽  
Liyan wang ◽  
sijie xie ◽  
Yingjie Chen ◽  
Shuting Song ◽  
...  

Abstract Background: MEG3 is abnormally down-regulated in most tumors and inhibits tumorigenesis. Methods: Gene infection, Western blotting and tumorigenesis test in vitro and in vivo were performed to analyze the signaling pathway. Results: MEG3 increased the loading of P300 and RNA polymerase II onto the promoter regions of P53. Notably, MEG3 increased the methylation of histone H3 at lysine 27 through increasing the interplay between PRC2 and histone H3. Furthermore, MEG3 inhibited the expression of TERT by increasing the H3K27me3 and decreasing the loading of RNA pol Ⅱ in TERT promoter regions. Moreover, MEG3 inhibit the activity of telomerase by reducing the binding of TERT to TERC competitively. In addition, MEG3 also increased the TERRA through reducing DNA methyltransferase DNMT3b binding to the promoter regions of TERRA competitively. Therefore, the interaction between TERC and TERT was competitively attenuated by increasing the interaction between TERRA and TERT, which inhibited the activity of telomerase in hLCSCs.In particular, MEG3 shortened the length of telomere by blocking the formation of complex maintaining telomere length(POT1-Exo1-TRF2-SNM1B) and decreasing the binding of the complex to telomere competitively, which was caused by increasing the interplay between P53 and HULC in hLCSCs.Strikingly, MEG3 inhibited the growth in vitro and in vivo of hLCSCs by reducing the activity of telomerase and attenuating telomeric repeat binding factor 2(TRF2). Conclusions: our results demonstrated MEG3 inhibits the occurrence of human liver cancer and these findings provide an important insight into the prevention and treatment of human liver cancer.


2006 ◽  
Vol 18 (2) ◽  
pp. 109 ◽  
Author(s):  
A. Bonk ◽  
M. Samuel ◽  
L. Lai ◽  
Y. Hao ◽  
R. Li ◽  
...  

Aberrant DNA methylation of in vitro-, parthenogenetic-, and nuclear transfer-derived embryos has been implicated in the low developmental competence of early embryos. Demethylation of the genome occurs immediately after fertilization and continues through the blastocyst stage. Remethylation or reprogramming of the genome occurs around the time of implantation and is maintained in somatic tissues. The aim of this study was to analyze DNA methylation in porcine gametes and blastocysts. Differential DNA methylation hybridization was conducted to analyze the methylation status of the Bstu I site (CGCG) in the gamete and blastocyst epigenomes. Germinal vesicle oocytes were aspirated from ovaries collected at an abattoir, sperm was isolated from a fresh ejaculate, and blastocysts were derived and collected from in vivo, in vitro, nuclear transfer, and parthenogenetic sources. Genomic clones were selected from a porcine CpG Island library based on the presence of a Bstu I site. The inserts from these clones were PCR amplified and spotted on glass slides. DNA was digested with Mse I, ligated to linkers, and digested with Bstu I. Fragments with methylated Bstu I sites remained intact whereas fragments with unmethylated Bstu I sites were cut. Intact fragments were amplified by PCR and labeled with amino allyl-dUTP. Liver DNA served as the reference and was labeled with Cy5; the other samples were labeled with Cy3. An Axon Genepix 4000B scanner (Axon Instruments, Inc., Union City, CA, USA) was used to scan the slides. Initial analysis of the microarray image was performed with GenePix Pro 4.0 software. Additional analysis, performed by using Genespring 7.0 ANOVA (P < 0.05), identified 221 clones as being significantly different in at least one of the biological conditions of the gametes or the blastocysts. Forty-six clones were sequenced and BLAST analysis identified 18 clones that were unique, 16 clones that had no similarity, and 12 clones that had similarity to multiple genes. Ribosomal (RPS20, RPL18) and protoporphyrinogen oxidase (PPOX) genes were identified in several clones. Components of the immune system (CCRs, TLRs), a transcription factor (ATF2), and an embryo-specific gene (WNT8B) were also identified. A condition tree was created according to the standard correlation similarity measure for the spots identified as significantly different. The condition tree shows that the methylation profiles are most similar in the germinal vesicle oocyte, parthenogenetic blastocyst, nuclear transfer blastocyst, in vitro-produced blastocyst, and sperm. In vivo-produced blastocysts grouped separately from the other samples. These results are consistent with previous studies that have shown that gametes undergo demethylation after fertilization on through the blastocyst stage when the genome is remethylated. Additionally, these results suggest that the reprogramming events that occur during the development of the in vivo-produced blastocysts are less likely to occur in in vitro-, nuclear transfer-, and parthenogenetic-produced blastocysts. This work was funded by a grant from the NIH (RR13438) and Food for the 21st Century.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Wang ◽  
Chuan Tong ◽  
Hanren Dai ◽  
Zhiqiang Wu ◽  
Xiao Han ◽  
...  

AbstractInsufficient eradication capacity and dysfunction are common occurrences in T cells that characterize cancer immunotherapy failure. De novo DNA methylation promotes T cell exhaustion, whereas methylation inhibition enhances T cell rejuvenation in vivo. Decitabine, a DNA methyltransferase inhibitor approved for clinical use, may provide a means of modifying exhaustion-associated DNA methylation programmes. Herein, anti-tumour activities, cytokine production, and proliferation are enhanced in decitabine-treated chimeric antigen receptor T (dCAR T) cells both in vitro and in vivo. Additionally, dCAR T cells can eradicate bulky tumours at a low-dose and establish effective recall responses upon tumour rechallenge. Antigen-expressing tumour cells trigger higher expression levels of memory-, proliferation- and cytokine production-associated genes in dCAR T cells. Tumour-infiltrating dCAR T cells retain a relatively high expression of memory-related genes and low expression of exhaustion-related genes in vivo. In vitro administration of decitabine may represent an option for the generation of CAR T cells with improved anti-tumour properties.


2015 ◽  
Vol 8 (4) ◽  
pp. 465-476 ◽  
Author(s):  
X. Li ◽  
J. Gao ◽  
K. Huang ◽  
X. Qi ◽  
Q. Dai ◽  
...  

Ochratoxin A (OTA), which is found in a variety of food products, is associated with the development of nephrotoxicity and carcinogenicity in rats and has raised public health concerns. A previous study in our laboratory indicated that OTA exposure induced cytotoxicity by decreasing global DNA methylation in vitro. However, the relationship between OTA-induced nephrotoxicity and DNA methylation changes in vivo remains unclear. The object of this study was to investigate whether OTA can change global DNA methylation or alter the expression of several critical tumour-related genes by inducing methylation modifications before carcinogenesis. We focused on the mechanism of action of OTA in regard to DNA methylation, including the expression of DNA methyltransferases and the regulation of specific cell signalling pathways. Dynamic and dose-dependent changes of global DNA methylation were observed during OTA-induced nephrotoxicity and probably associated with the expression of DNA methyltransferase 1. 13-week exposure of OTA caused hypermethylation in the promoters of critical cell adhesion-related genes, E-cadherin and N-cadherin, leading to reduction of the corresponding mRNA expression, accompanied by transcriptional activation of the Wnt and PI3K/AKT pathways. These findings suggested that long-term OTA exposure could disrupt DNA methylation profile, which might be one of the possible mechanisms of OTA-induced nephrotoxicity.


Sign in / Sign up

Export Citation Format

Share Document