scholarly journals Shifts in the Gut Metabolome andClostridium difficileTranscriptome throughout Colonization and Infection in a Mouse Model

mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Joshua R. Fletcher ◽  
Samantha Erwin ◽  
Cristina Lanzas ◽  
Casey M. Theriot

ABSTRACTAntibiotics alter the gut microbiota and decrease resistance toClostridium difficilecolonization; however, the mechanisms driving colonization resistance are not well understood. Loss of resistance toC. difficilecolonization due to antibiotic treatment is associated with alterations in the gut metabolome, specifically, with increases in levels of nutrients thatC. difficilecan utilize for growthin vitro. To define the nutrients thatC. difficilerequires for colonization and pathogenesisin vivo, we used a combination of mass spectrometry and RNA sequencing (RNA Seq) to model the gut metabolome andC. difficiletranscriptome throughout an acute infection in a mouse model at the following time points: 0, 12, 24, and 30 h. We also performed multivariate-based integration of the omics data to define the signatures that were most important throughout colonization and infection. Here we show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time in the mouse cecum and thatC. difficilegene expression is consistent with their utilizationin vivo. This was also reinforced by the multivariate-based integration of the omics data where we were able to discriminate the metabolites and transcripts that supportC. difficilephysiology between the different time points throughout colonization and infection. This report illustrates how important the availability of amino acids and other nutrients is for the initial stages ofC. difficilecolonization and progression of disease. Future studies identifying the source of the nutrients and engineering bacteria capable of outcompetingC. difficilein the gut will be important for developing new targeted bacterial therapeutics.IMPORTANCEClostridium difficileis a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoringC. difficilegrowth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages ofC. difficilecolonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and thatC. difficilegene expression is consistent with their utilization by the bacteriumin vivo. We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential forC. difficilecolonization and disease.

Author(s):  
Moath Alqaraleh ◽  
Violet Kasabri ◽  
Ibrahim Al-Majali ◽  
Nihad Al-Othman ◽  
Nihad Al-Othman ◽  
...  

Background and aims: Branched chain amino acids (BCAAs) can be tightly connected to metabolism syndrome (MetS) which can be counted as a metabolic indicator in the case of insulin resistance (IR). The aim of this study was to assess the potential role of these acids under oxidative stress. Material and Methods: the in vitro antioxidant activity of BCAAs was assessed using free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging assays. For further check, a qRT-PCR technique was madefor detection the extent of alterations in gene expression of antioxidative enzymes (catalase and glutathione peroxidase (Gpx)) in lipopolysaccharides (LPS(-induced macrophages RAW 264.7 cell line. Additionally, BCAAs antioxidant activity was evaluated based on plasma H2O2 levels and xanthine oxidase (XO) activity in prooxidative LPS-treated mice. Results: Different concentrations of BCAAs affected on DPPH radical scavenging activity but to lesser extent than the ascorbic acid. Besides, BCAAs obviously upregulated the gene expression levels of catalases and Gpx in LPS-modulated macrophage RAW 264.7 cell line. In vivo BCAAs significantly minimized the level of plasma H2O2 as well as the activity of XO activity under oxidative stress. Conclusion: our current findings suggest that BCAAs supplementation may potentially serve as a therapeutic target for treatment of oxidative stress occurs with atherosclerosis, IR-diabetes, MetS and tumorigenesis.


1998 ◽  
Vol 274 (1) ◽  
pp. E13-E22 ◽  
Author(s):  
Misoo Chung ◽  
Cecilia Teng ◽  
Michelle Timmerman ◽  
Giacomo Meschia ◽  
Frederick C. Battaglia

Uterine and umbilical uptakes of plasma amino acids were measured simultaneously in eighteen singleton pregnant ewes at 130 ± 1 days gestation for the purpose of establishing which amino acids are produced or used by the uteroplacenta under normal physiological conditions and at what rates. The branched-chain amino acids (BCAA) had uterine uptakes significantly greater than umbilical uptakes. Net uteroplacental BCAA utilization was 8.0 ± 2.5 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.005) and represented 42% of the total BCAA utilization by fetus plus uteroplacenta. There was placental uptake of fetal glutamate (4.2 ± 0.3 μmol ⋅ kg fetus−1 ⋅ min−1, P < 0.001) and no uterine uptake of maternal glutamate. Umbilical uptake of glutamine was ∼61% greater than uterine uptake, thus demonstrating net uteroplacental glutamine production of 2.2 ± 0.9 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.021). In conjunction with other evidence, these data indicate rapid placental metabolism of glutamate, which is in part supplied by the fetus and in part produced locally via BCAA transamination. Most of the glutamate is oxidized, and some is used to synthesize glutamine, which is delivered to the fetus. There was net uteroplacental utilization of maternal serine and umbilical uptake of glycine produced by the placenta. Maternal serine utilization and glycine umbilical uptake were virtually equal (3.14 ± 0.50 vs. 3.10 ± 0.46 μmol ⋅ kg fetus−1 ⋅ min−1). This evidence supports the conclusion that the ovine placenta converts large quantities of maternal serine into fetal glycine.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Gang Li ◽  
Qian Zhao ◽  
Tian Luan ◽  
Yangbo Hu ◽  
Yueling Zhang ◽  
...  

ABSTRACT The (p)ppGpp-mediated stringent response (SR) is a highly conserved regulatory mechanism in bacterial pathogens, enabling adaptation to adverse environments, and is linked to pathogenesis. Actinobacillus pleuropneumoniae can cause damage to the lungs of pigs, its only known natural host. Pig lungs are known to have a low concentration of free branched-chain amino acids (BCAAs) compared to the level in plasma. We had investigated the role for (p)ppGpp in viability and biofilm formation of A. pleuropneumoniae. Now, we sought to determine whether (p)ppGpp was a trigger signal for the SR in A. pleuropneumoniae in the absence of BCAAs. Combining transcriptome and phenotypic analyses of the wild type (WT) and an relA spoT double mutant [which does not produce (p)ppGpp], we found that (p)ppGpp could repress de novo purine biosynthesis and activate antioxidant pathways. There was a positive correlation between GTP and endogenous hydrogen peroxide content. Furthermore, the growth, viability, morphology, and virulence were altered by the inability to produce (p)ppGpp. Genes involved in the biosynthesis of BCAAs were constitutively upregulated, regardless of the existence of BCAAs, without accumulation of (p)ppGpp beyond a basal level. Collectively, our study shows that the absence of BCAAs was not a sufficient signal to trigger the SR in A. pleuropneumoniae. (p)ppGpp-mediated regulation in A. pleuropneumoniae is different from that described for the model organism Escherichia coli. Further work will establish whether the (p)ppGpp-dependent SR mechanism in A. pleuropneumoniae is conserved among other veterinary pathogens, especially those in the Pasteurellaceae family. IMPORTANCE (p)ppGpp is a key player in reprogramming transcriptomes to respond to nutritional challenges. Here, we present transcriptional and phenotypic differences of A. pleuropneumoniae grown in different chemically defined media in the absence of (p)ppGpp. We show that the deprivation of branched-chain amino acids (BCAAs) does not elicit a change in the basal-level (p)ppGpp, but this level is sufficient to regulate the expression of BCAA biosynthesis. The mechanism found in A. pleuropneumoniae is different from that of the model organism Escherichia coli but similar to that found in some Gram-positive bacteria. This study not only broadens the research scope of (p)ppGpp but also further validates the complexity and multiplicity of (p)ppGpp regulation in microorganisms that occupy different biological niches.


2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


1980 ◽  
Vol 188 (3) ◽  
pp. 705-713 ◽  
Author(s):  
G Livesey ◽  
P Lund

1. A procedure is described for the purification of leucine dehydrogenase (EC 1.4.1.9) from Bacillus subtilis. 2. The preparation is suitable for the quantitative assay of branched-chain amino acids and their 2-oxoacid analogues. 3. The content of total branched-chain 2-oxoacids in freeze-clamped liver, kidney, heart or mammary gland of fed rats is less than 5 nmol/g fresh wt. Higher amounts are present in skeletal muscle and arterial blood (25 +/- 4 nmol per g fresh wt., and 33 +/- 6 nmol per ml respectively; means +/- S.D. of 3 and 11 animals respectively). The values are not significantly affected by starvation for 24 h. 4. Arteriovenous difference measurements show that considerable amounts of branched-chain 2-oxoacids are released by skeletal muscle into the circulation and similar amounts are removed by the liver (about 1 mmol/24 h in a 400 g rat).


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


1983 ◽  
Vol 210 (2) ◽  
pp. 451-455 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

1. A method is described for measuring arteriovenous differences across the rat stomach in vivo. 2. Notable results were the uptake of branched-chain amino acids, the uptake of arginine, which was approximately balanced by an output of ornithine, and the output of alanine. 3. The fractional extraction of glutamine from the blood by the stomach wall of pentagastrin-stimulated rats was 4.7%. 4. The arteriovenous differences for ammonia depended upon the blood ammonia concentration. 5. Arteriovenous differences were not affected by the stimulation of acid secretion with pentagastrin. 6. It is concluded that the high activity of branched-chain-amino-acid aminotransferase (EC 2.6.1.42) in the gastric mucosa is associated with metabolism of these amino acids, but that the stomach wall is a less avid user of glutamine than is the small intestine.


1984 ◽  
Vol 247 (5) ◽  
pp. C450-C453 ◽  
Author(s):  
J. T. Brosnan ◽  
R. G. Forsey ◽  
M. E. Brosnan

The uptake of tyrosine and leucine by brain of control and diabetic rats was examined using the Oldendorf intracarotid injection technique. The brain uptake indexes (BUI) for tyrosine and leucine were identical in diabetic and control rats when the injectate consisted of labeled amino acids in Krebs saline. When the injectate consisted of radioactive amino acids added to plasma from either normal or diabetic rats, there was a decreased BUI for tyrosine from diabetic plasma compared with that from normal plasma. This was evident in both control and diabetic rats. Fractional uptake of leucine was unchanged in all situations. Because leucine level is elevated in plasma of diabetic rats there is an absolute increase in leucine uptake in diabetes. Branched-chain amino acids, added to normal plasma in the concentrations at which they occur in diabetic plasma, inhibited the uptake of tyrosine to the same extent as diabetic plasma did. We conclude that the decreased brain uptake and decreased brain level of tyrosine in diabetes is due to the high circulating levels of branched-chain amino acids and cannot be attributed to intrinsic changes in the blood-brain transporter for large neutral amino acids or to changes in other constituents of plasma.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Yiqin Deng ◽  
Xing Luo ◽  
Mei Xie ◽  
Philippe Bouloc ◽  
Chang Chen ◽  
...  

ABSTRACT Bacteria synthesize amino acids according to their availability in the environment or, in the case of pathogens, within the host. We explored the regulation of the biosynthesis of branched-chain amino acids (BCAAs) (l-leucine, l-valine, and l-isoleucine) in Vibrio alginolyticus, a marine fish and shellfish pathogen and an emerging opportunistic human pathogen. In this species, the ilvGMEDA operon encodes the main pathway for biosynthesis of BCAAs. Its upstream regulatory region shows no sequence similarity to the corresponding region in Escherichia coli or other Enterobacteriaceae, and yet we show that this operon is regulated by transcription attenuation. The translation of a BCAA-rich peptide encoded upstream of the structural genes provides an adaptive response similar to the E. coli canonical model. This study of a nonmodel Gram-negative organism highlights the mechanistic conservation of transcription attenuation despite the absence of primary sequence conservation. IMPORTANCE This study analyzes the regulation of the biosynthesis of branched-chain amino acids (leucine, valine, and isoleucine) in Vibrio alginolyticus, a marine bacterium that is pathogenic to fish and humans. The results highlight the conservation of the main regulatory mechanism with that of the enterobacterium Escherichia coli, suggesting that such a mechanism appeared early during the evolution of Gram-negative bacteria, allowing adaptation to a wide range of environments.


Sign in / Sign up

Export Citation Format

Share Document