scholarly journals Prevalence and Characteristics of Extended-Spectrum-β-Lactamase-Producing and Carbapenemase-Producing Enterobacteriaceae from Freshwater Fish and Pork in Wet Markets of Hong Kong

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Dulmini Nanayakkara Sapugahawatte ◽  
Carmen Li ◽  
Chendi Zhu ◽  
Priyanga Dharmaratne ◽  
Kam Tak Wong ◽  
...  

ABSTRACT This study identified and characterized extended-spectrum-β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) from farmed freshwater fish and pig offal procured from the wet markets across Hong Kong. During March 2018 to January 2019, 730 food animal samples, namely, 213 snakehead fish, 198 black carp, and 339 pig organs, were examined. ESBL-E and CPE were isolated from the homogenized samples plated on selective media and identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS). All ESBL-E and CPE strains were tested for antimicrobial susceptibilities. ESBL-E and CPE gene groups were detected by multiplex PCR and blaCTX-M-1/-2/-9 group strains were Sanger sequenced for CTX-M types. All CPE isolates were whole-genome sequenced. Isolation of ESBL-E from pig small (52.4%) and large (50%) intestines and tongues (25.1%) was significantly (P < 0.05) more frequent than from snakehead (0.94%) and black carp (0.5%) fish. ESBL-E isolates (n = 171) revealed resistance rates of 16.3%, 29.8%, 35.6%, 53.2%, 55.0%, and 100% to piperacillin-tazobactam, amoxicillin-clavulanate, cefepime, gentamicin, ciprofloxacin, and ampicillin, respectively, whereas CPE (n = 28) were resistant to almost all the antibiotics tested except gentamicin, ciprofloxacin, and fosfomycin. The predominant ESBL gene groups in fishes and pig offals were blaCTX, where blaCTX-M-55 was the major subtype in the blaCTX-M-1 group (64.4% of isolates in the group). blaCTX-M-14/-17 was the major genotype in the blaCTX-M-9 group (32.2%). All CPE strains possessed blaNDM genes. High rates of ESBL-E and CPE were identified in food animals from wet markets of Hong Kong, which may serve as a potential reservoir of antimicrobial-resistant genes and increase the challenges in tackling antimicrobial resistance beyond health care settings. IMPORTANCE Extended-spectrum-β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are of global health importance, yet there is a paucity of surveillance studies on food animals in Hong Kong. Here, we report a high prevalence of ESBL-E (ranging from 0.5% to 52.4%) and CPE (0% to 9.9%) from various food animal samples procured from wet markets across Hong Kong. All CPE strains were characterized by whole-genome sequencing and possessed NDM-1 and -5 genes and other resistance determinants. Given the increased resistance profile of these strains, this study highlights the emerging threat of ESBL-E and CPE disseminated in farmed animals. Furthermore, our data enriched our understanding of antibiotic resistance reservoirs from a One Health perspective that can widely spread across various niches, beyond health care settings.

mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Jolene R. Bowers ◽  
Elizabeth M. Driebe ◽  
Valerie Albrecht ◽  
Linda K. McDougal ◽  
Mitchell Granade ◽  
...  

ABSTRACTStrains ofStaphylococcus aureusin clonal complex 8 (CC8), including USA300, USA500, and the Iberian clone, are prevalent pathogens in the United States, both inside and outside health care settings. Methods for typing CC8 strains are becoming obsolete as the strains evolve and diversify, and whole-genome sequencing has shown that some strain types fall into multiple sublineages within CC8. In this study, we attempt to clarify the strain nomenclature of CC8, classifying the major strain types based on whole-genome sequence phylogenetics using both methicillin-resistantS. aureus(MRSA) and methicillin-susceptibleS. aureus(MSSA) genomes. We show that isolates of the Archaic and Iberian clones from decades ago make up the most basal clade of the main CC8 lineages and that at least one successful lineage of CC8, made up mostly of MSSA, diverged before the other well-known strain types USA500 and USA300. We also show that the USA500 type includes two clades separated by the previously described “Canadian epidemic MRSA” strain CMRSA9, that one clade containing USA500 also contains the USA300 clade, and that the USA300-0114 strain type is not a monophyletic group. Additionally, we present a rapid, simple CC8 strain-typing scheme using real-time PCR assays that target single nucleotide polymorphisms (SNPs) derived from our CC8 phylogeny and show the significant benefit of using more stable genomic markers based on evolutionary lineages over traditionalS. aureustyping techniques. This more accurate and accessibleS. aureustyping system may improve surveillance and better inform the epidemiology of this very important pathogen.IMPORTANCEStaphylococcus aureusis a major human pathogen worldwide in both community and health care settings. Surveillance forS. aureusstrains is important to our understanding of their spread and to informing infection prevention and control. Confusion surrounding the strain nomenclature of one of the most prevalent lineages ofS. aureus, clonal complex 8 (CC8), and the imprecision of current tools for typingS. aureusmake surveillance and source tracing difficult and sometimes misleading. In this study, we clarify the CC8 strain designations and propose a new typing scheme for CC8 isolates that is rapid and easy to use. This typing scheme is based on relatively stable genomic markers, and we demonstrate its superiority over traditional typing techniques. This scheme has the potential to greatly improve epidemiological investigations ofS. aureus.


2014 ◽  
Vol 58 (8) ◽  
pp. 4814-4825 ◽  
Author(s):  
Tracy H. Hazen ◽  
LiCheng Zhao ◽  
Mallory A. Boutin ◽  
Angela Stancil ◽  
Gwen Robinson ◽  
...  

ABSTRACTThe IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. AblaFOX-5gene was detected in 14Escherichia coliand 16Klebsiellaisolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of fiveE. coliisolates and sixKlebsiellaisolates containingblaFOX-5were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11E. coliandKlebsiellaisolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings.


Author(s):  
R. Bindu Madhavi ◽  
A.R. Hanumanthappa

Hospital-acquired infections (HAIs) are continuing to be a major risk in health care settings. World Health Organization (WHO) describes surgical site infections (SSIs) as one among the major health issue, causing enormous burden to both patients as well as doctors. Multidrug-resistant pathogens that cause SSIs continue to be an ongoing and increasing challenge to health care settings. The objective of the present study was to know the prevalence of extended-spectrum beta-lactamase (ESBL) producing gram-negative bacilli causing SSIs at a tertiary healthcare facility. The present cross-sectional observational study was done for a period of one year. Pus samples from clinically suspected cases of SSIs were collected and subjected to bacterial culture and sensitivity testing. From the total of 140 samples collected, a total of 138 bacterial isolates were isolated. Out of 138 isolates, 85 isolates (61.6%) were identified as gram-negative bacilli of which 33 isolates (38.8%) were identified to be ESBL phenotypes. The majority of the ESBL phenotypes were Escherichia coli (25.9%) followed by Klebsiella pneumoniae (7%), Acinetobacter species (2.4%), Pseudomonas aeruginosa (2.4%) and Proteus species (1.2%). Regular surveillance of antibiotic sensitivity pattern and screening for beta-lactamase production should be done which helps to know the trends of pathogenic bacteria causing SSI and guides in planning antibiotic therapy.


2016 ◽  
Vol 1 (13) ◽  
pp. 122-129 ◽  
Author(s):  
Wendy Chase ◽  
Lucinda Soares Gonzales

This article will describe the approach to dysphagia education in a classroom setting at the University of Connecticut (UCONN), explore the disparity between student performance in schools vs. health care settings that was discovered at UCONN, and offer suggestions for practicum supervisors in medical settings to enhance student acquisition of competence.


Author(s):  
Kenneth G. Castro ◽  
Mary D. Hutton ◽  
Robert J. Mullan ◽  
Jacquelyn A. Polder ◽  
Dixie E. Snider

Sign in / Sign up

Export Citation Format

Share Document