scholarly journals A Novel Trimethoprim Resistance Gene, dfrA36, Characterized from Escherichia coli from Calves

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Dominik Wüthrich ◽  
Michael Brilhante ◽  
Anna Hausherr ◽  
Jens Becker ◽  
Mireille Meylan ◽  
...  

The presence of dfrA36 associated with ISCR2 in Escherichia coli from animals, as well as its presence in other E. coli strains from different sources and countries and in Acinetobacter, highlights the global spread of this gene and its potential for further dissemination. The genetic link of ISCR2-dfrA36 with other antibiotic and disinfectant resistance genes showed that multidrug-resistant E. coli may be selected and maintained by the use of either one of several antimicrobials.

2015 ◽  
Vol 81 (16) ◽  
pp. 5560-5566 ◽  
Author(s):  
Seung Won Shin ◽  
Min Kyoung Shin ◽  
Myunghwan Jung ◽  
Kuastros Mekonnen Belaynehe ◽  
Han Sang Yoo

ABSTRACTThe aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistantEscherichia coliisolates recovered from beef cattle in South Korea. A total of 155E. coliisolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance genetet(A) (46.5%) was the most prevalent, followed bytet(B) (45.1%) andtet(C) (5.8%). Strains carryingtet(A) plustet(B) andtet(B) plustet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carryingtet(B) had higher MIC values than isolates carryingtet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistantE. coliisolates in beef cattle is due to the transferability of tetracycline resistance genes betweenE. colipopulations which have survived the selective pressure caused by the use of antimicrobial agents.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Bao-Tao Liu ◽  
Feng-Jing Song ◽  
Ming Zou ◽  
Zhi-Hui Hao ◽  
Hu Shan

ABSTRACT We report the presence of mcr-1 in Escherichia coli and carbapenem-resistant Cronobacter sakazakii from the same diseased chicken. The mcr-1 gene linked with ISApl1 was located on two different IncI2 plasmids, including one multidrug plasmid in E. coli, whereas fosA3-bla NDM-9 was on an IncB/O plasmid in C. sakazakii. The development of the fosA3-bla NDM-9 resistance region was mediated by IS26. The colocation of mcr-1 or bla NDM-9 with other resistance genes will accelerate the dissemination of the two genes.


2011 ◽  
Vol 77 (10) ◽  
pp. 3293-3299 ◽  
Author(s):  
Margaret A. Davis ◽  
Thomas E. Besser ◽  
Lisa H. Orfe ◽  
Katherine N. K. Baker ◽  
Amelia S. Lanier ◽  
...  

ABSTRACTWe hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains ofEscherichia colifor their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fisher's exact test,P= 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fisher's exact test,P< 0.0001). Two novel resistance genes were discovered inE. coliisolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative forblaCMY-2had mutations in the promoter regions of the chromosomalE. coliampCgene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospitalE. coliisolates have been reported worldwide. Prevalence or rates ofE. coliampCpromoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments.


2018 ◽  
Vol 46 (1) ◽  
pp. 9
Author(s):  
Jia-San Zheng ◽  
Ting-Ting Zhu ◽  
Yun Liu ◽  
Ting Liu ◽  
Yan-Qing Li ◽  
...  

Background: To explore the epidemiology of bovine multidrug-resistant Escherichia coli isolates and resistance genes in Heilongjiang province of China. This study examined the prevalence of genes in bovine E. coli isolates, which confer resistance to antibiotics that are commonly used in the clinic, in regions of Baiquan, Shangzhi, and Songbei of Harbin. The purpose of the study was to investigate the epidemiology of the main resistance genes of bovine E. coli isolates in clinical veterinary medicine, and to provide a theoretical basis for preventing the spread of drug-resistant bacteria, as well as for rational drug use.Materials, Methods & Results: The sensitivity of 105 isolates to 22 antibiotics was determined using the KirbyBauer disk diffusion method, and the distribution of 19 kinds of common drug resistance genes was investigated using Polymerase Chain Reaction. The results showed that the resistance rate to nine antibiotics was over 50%, including rifampin (84.76%), ampicillin (73.58%), tetracycline (69.52%), and sulfisoxazole (59.05%). In total, 105 strains of bovine E. coli presented 21 spectra of drug resistance, including eight strains (7.62%, 8/105) that were resistant to one antibiotic and four strains (3.81%, 4/105) that were resistant to 21 antibiotics. The resistance gene detection results showed that the streptomycin-resistance gene strA was found in 73 isolates, accounting for 69.52% of the isolates, followed by the sulfanilamide-resistance genes sul3/sul2 and the aminoglycoside-resistance gene aphA, which accounted for 57.14%, 51.43%, and 50.48%, respectively, of the isolates.Discussion: This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin. Drug sensitivity tests showed that the drug resistance spectra of the bovine E. coli isolates was different in different regions, indicating that there were multidrug-resistant bovine E. coli isolates in different regions of Heilongjiang province, and that drug resistance differed among different regions. This may be due to prolonged use or overuse of antibiotics in a particular locality. Additionally, because of different management modes of livestock farms, the application of antimicrobial drugs in some farms may have imposed selective pressure on the intestinal flora including E. coli, resulting in the horizontal transmission of drug resistance among the bacteria. The study found that some strains had a resistance phenotype, but no resistance gene, while some had a resistance gene without expressing a resistance phenotype, which is consistent with relevant reports in the literature. This may be related to the same genotype corresponding to different resistance phenotypes, or different levels of gene expression, or different drug metabolic rates. In our study, some strains with certain drug resistance genes were sensitive to the corresponding drug, which may be due to mutations of drug-resistance genes, the loss of a strains resistance phenotype, or the loss of gene function. These issues require further study. This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACT The increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts on human medicine. Many of the multidrug-resistant (multiresistant) Enterobacteriaceae found in humans are community acquired, and some of them are possibly linked to food animals (i.e., livestock raised for meat and dairy products). In this study, we examined whether numerically dominant commensal Escherichia coli strains from humans (n = 63 isolates) and domestic animals (n = 174 isolates) in the same community and with matching phenotypic AMR patterns were clonally related or shared the same plasmids. We identified 25 multiresistant isolates (i.e., isolates resistant to more than one antimicrobial) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes, and plasmids carrying the AMR genes using conjugation, replicon typing, and whole-genome sequencing. All of the multiresistant E. coli isolates (from children and domestic animals) analyzed had at least 90 or more whole-genome SNP differences between one another, suggesting that none of the strains was recently transferred. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. We did not find evidence of the clonal spread of AMR in this community: instead, AMR genes were carried on diverse clones and plasmids. This presents a significant challenge for understanding the movement of AMR in a community. IMPORTANCE Even though Escherichia coli strains may share nearly identical phenotypic AMR profiles and AMR genes and overlap in space and time, the diversity of clones and plasmids challenges research that aims to identify sources of AMR. Horizontal gene transfer appears to play a more significant role than clonal expansion in the spread of AMR in this community.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Lii-Tzu Wu ◽  
Xin-Xia Wu ◽  
Se-Chin Ke ◽  
Yi-Pei Lin ◽  
Ying-Chen Wu ◽  
...  

Introduction. Antimicrobial resistance associated with animal hosts is easily transmitted to humans either by direct contact with resistant organisms or by transferring resistance genes into human pathogens. Gap statement. There are limited studies on antimicrobial resistance genes and genetic elements of multidrug-resistant (MDR) Escherichia coli in veterinary hospitals in Taiwan. Aim. The aim of this study was to investigate antimicrobial resistance genes in multidrug-resistant Escherichia coli from animals. Methodology. Between January 2014 and August 2015, 95 multidrug-resistant Escherichia coli isolates were obtained from pigs (n=66), avians (n=18), and other animals (n=11) in a veterinary hospital in Taiwan. Susceptibility testing to 24 antimicrobial agents of 14 antimicrobial classes was performed. Antimicrobial resistance genes, integrons, and insertion sequences were analysed by polymerase chain reaction and nucleotide sequencing. Pulsed-field gel electrophoresis (PFGE), and multi-locus sequence typing were used to explore the clonal relatedness of the study isolates. Results. Different antimicrobial resistance genes found in these isolates were associated with resistance to β-lactams, tetracycline, phenicols, sulfonamides, and aminoglycosides. Fifty-five of 95 E. coli isolates (55/95, 57.9 %) were not susceptible to extended-spectrum cephalosporins, and bla CTX-M-55 (11/55, 20.0 %) and bla CMY-2 (40/55, 72.7 %) were the most common extended-spectrum β-lactamase (ESBL) and AmpC genes, respectively. Both bla CTX-M and bla CMY-2 were present on conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Plasmid-mediated FOX-3 β-lactamase-producing E. coli was first identified in Taiwan. Forty isolates (40/95, 42 %) with class 1 integrons showed seven resistance phenotypes. Genotyping of 95 E. coli isolates revealed 91 different XbaI pulsotypes and 52 different sequence types. PFGE analysis revealed no clonal outbreaks in our study isolates. Conclusion. This study showed a high diversity of antimicrobial resistance genes and genotypes among MDR E. coli isolated from diseased livestock in Taiwan. To our knowledge, this is the first report of plasmid-mediated ESBL in FOX-3 β-lactamase-producing E. coli isolates in Taiwan. MDR E. coli isolates from animal origins may contaminate the environment, resulting in public health concerns, indicating that MDR isolates from animals need to be continuously investigated.


2014 ◽  
Vol 58 (4) ◽  
pp. 2422-2425 ◽  
Author(s):  
Liang Chen ◽  
Hongyan Hu ◽  
Kalyan D. Chavda ◽  
Shulong Zhao ◽  
Renkun Liu ◽  
...  

ABSTRACTWe report here the nucleotide sequence of a novelblaKPC-2-harboring incompatibility group N (IncN) plasmid, pECN580, from a multidrug-resistantEscherichia colisequence type 131 (ST131) isolate recovered from Beijing, China. pECN580 harbors β-lactam resistance genesblaKPC-2,blaCTX-M-3, andblaTEM-1; aminoglycoside acetyltransferase geneaac(6′)-Ib-cr; quinolone resistance geneqnrS1; rifampin resistance genearr-3; and trimethoprim resistance genedfrA14. The emergence of ablaKPC-2-harboring multidrug-resistant plasmid in an epidemicE. coliST131 clone poses a significant potential threat in community and hospital settings.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Oumar Ouchar Mahamat ◽  
Manon Lounnas ◽  
Mallorie Hide ◽  
Abelsalam Tidjani ◽  
Julio Benavides ◽  
...  

ABSTRACT We detected for the first time blaNDM-5 and blaOXA-181 in Escherichia coli isolates from hospitalized patients and healthy volunteers in Chad. These resistance genes were located on IncX3 and IncF plasmids. Despite the large diversity of E. coli clones, the identified resistant intestinal isolates belonged mainly to the same sequence type.


Sign in / Sign up

Export Citation Format

Share Document