scholarly journals Staphylococcal TSST-1 Association with Eczema Herpeticum in Humans

mSphere ◽  
2021 ◽  
Author(s):  
Patrick M. Schlievert ◽  
Richard J. Roller ◽  
Samuel H. Kilgore ◽  
Miguel Villarreal ◽  
Aloysius J. Klingelhutz ◽  
...  

Atopic dermatitis (eczema, AD) with concurrent herpes simplex virus infection (eczema herpeticum, ADEH) is a severe form of AD. We show that ADEH patients are colonized with Staphylococcus aureus that primarily produces the superantigen toxic shock syndrome toxin-1 (TSST-1); however, significantly but to a lesser extent the superantigens staphylococcal enterotoxins A, B, and C are also represented in ADEH.

mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Joseph A. Merriman ◽  
Elizabeth A. Mueller ◽  
Michael P. Cahill ◽  
Lisa A. Beck ◽  
Amy S. Paller ◽  
...  

ABSTRACT Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations. Atopic dermatitis (AD) is an inflammatory skin condition strongly associated with Staphylococcus aureus colonization and infection. S. aureus strains shift in populations in ~10-year intervals depending on virulence factors. Shifts in S. aureus virulence factors may in part explain the racial differences observed in the levels of prevalence and severity of AD. AD S. aureus isolates collected from 2011 to 2014 (103 isolates) and in 2008 (100 isolates) were examined for the prevalence of genes encoding superantigens (SAgs). The strains from 2011 to 2014 were obtained from AD patients as a part of the National Institute of Allergy and Infectious Diseases (NIAID) Atopic Dermatitis Research Network (ADRN). The prevalence of SAg genes was investigated temporally and racially. The enterotoxin gene cluster (EGC) was more prevalent in the 2011–2014 AD isolates than in the 2008 AD isolates. The prevalences of virulence factor genes were similar in European American (EA) and Mexican American (MA) patients but differed in 6 of 22 SAg genes between EA and African American (AA) or MA and AA isolates; notably, AA isolates lacked tstH, the gene encoding toxic shock syndrome toxin 1 (TSST-1). The presence of tstH and sel-p (enterotoxin-like P) was associated with decreased clinical severity and increased blood eosinophils, respectively. The EGC is becoming more prevalent, consistent with the previously observed 10 years of cycling of S. aureus strains. Race-specific S. aureus selection may account for differences in virulence factor profiles. The lack of TSST-1-positive (TSST-1+) AD S. aureus in AA is consistent with the lack of AAs acquiring TSST-1-associated menstrual toxic shock syndrome (TSS). IMPORTANCE Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Kouji Narita ◽  
Dong-Liang Hu ◽  
Krisana Asano ◽  
Akio Nakane

ABSTRACT Development of long-term memory is crucial for vaccine-induced adaptive immunity against infectious diseases such as Staphylococcus aureus infection. Toxic shock syndrome toxin 1 (TSST-1), one of the superantigens produced by S. aureus, is a possible vaccine candidate against infectious diseases caused by this pathogen. We previously reported that vaccination with less toxic mutant TSST-1 (mTSST-1) induced T helper 17 (Th17) cells and elicited interleukin-17A (IL-17A)-mediated protection against S. aureus infection 1 week after vaccination. In the present study, we investigated the host immune response induced by mTSST-1 vaccination in the memory phase, 12 weeks after the final vaccination. The protective effect and IL-17A production after vaccination with mTSST-1 were eliminated because of IL-10 production. In the presence of IL-10-neutralizing monoclonal antibody (mAb), IL-17A production was restored in culture supernatants of CD4+ T cells and macrophages sorted from the spleens of vaccinated mice. Vaccinated mice treated with anti-IL-10 mAb were protected against systemic S. aureus infection in the memory phase. From these results, it was suggested that IL-10 produced in the memory phase suppresses the IL-17A-dependent vaccine effect through downregulation of IL-17A production.


2018 ◽  
Vol 84 (12) ◽  
pp. e00351-18 ◽  
Author(s):  
Louis Nonfoux ◽  
Myriam Chiaruzzi ◽  
Cédric Badiou ◽  
Jessica Baude ◽  
Anne Tristan ◽  
...  

ABSTRACTFifteen currently marketed intravaginal protection products (11 types of tampon and 4 types of menstrual cup) were tested by the modified tampon sac method to determine their effect onStaphylococcus aureusgrowth and toxic shock syndrome toxin 1 (TSST-1) production. Most tampons reducedS. aureusgrowth and TSST-1 production, with differences based on brand and composition, and the level ofS. aureusgrowth was higher in destructured than in unaltered tampons. We observed higher levels ofS. aureusgrowth and toxin production in menstrual cups than in tampons, potentially due to the additional air introduced into the bag by cups, with differences based on cup composition and size.IMPORTANCEMenstrual toxic shock syndrome is a rare but severe disease. It occurs in healthy women vaginally colonized byStaphylococcus aureusproducing toxic shock syndrome toxin 1 using intravaginal protection, such as tampons or menstrual cups. Intravaginal protection induces TSS by the collection of catamenial products, which act as a growth medium forS. aureus. Previous studies evaluated the impact of tampon composition onS. aureusproducing toxic shock syndrome toxin 1, but they are not recent and did not include menstrual cups. This study demonstrates that highly reproducible results forS. aureusgrowth and TSST-1 production can be obtained by using a simple protocol that reproduces the physiological conditions of tampon and cup usage as closely as possible, providing recommendations for tampon or cup use to both manufacturers and consumers. Notably, our results do not show that menstrual cups are safer than tampons and suggest that they require similar precautions.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Bao G. Vu ◽  
Christopher S. Stach ◽  
Katarina Kulhankova ◽  
Wilmara Salgado-Pabón ◽  
Aloysius J. Klingelhutz ◽  
...  

ABSTRACTExcessive weight and obesity are associated with the development of diabetes mellitus type 2 (DMII) in humans. They also pose high risks ofStaphylococcus aureuscolonization and overt infections.S. aureuscauses a wide range of severe illnesses in both healthy and immunocompromised individuals. AmongS. aureusvirulence factors, superantigens are essential for pathogenicity. In this study, we show that rabbits that are chronically exposed toS. aureussuperantigen toxic shock syndrome toxin-1 (TSST-1) experience impaired glucose tolerance, systemic inflammation, and elevated endotoxin levels in the bloodstream, all of which are common findings in DMII. Additionally, such DMII-associated findings are also seen through effects of TSST-1 on isolated adipocytes. Collectively, our findings suggest that chronic exposure toS. aureussuperantigens facilitates the development of DMII, which may lead to therapeutic targeting ofS. aureusand its superantigens.IMPORTANCEObesity has a strong correlation with type 2 diabetes, in which fatty tissue, containing adipocytes, contributes to the development of the illness through altered metabolism and chronic inflammation. The human microbiome changes in persons with obesity and type 2 diabetes, including increases inStaphylococcus aureuscolonization and overt infections. While the microbiome is essential for human wellness, there is little understanding of the role of microbes in obesity or the development of diabetes. Here, we demonstrate that theS. aureussuperantigen toxic shock syndrome toxin-1 (TSST-1), an essential exotoxin in pathogenesis, induces inflammation, lipolysis, and insulin resistance in adipocytes bothin vitroandin vivo. Chronic stimulation of rabbits with TSST-1 results in impaired systemic glucose tolerance, the hallmark finding in type 2 diabetes in humans, suggesting a role ofS. aureusand its superantigens in the progression to type 2 diabetes.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Myriam Chiaruzzi ◽  
Alexia Barbry ◽  
Anaëlle Muggeo ◽  
Anne Tristan ◽  
Isaline Jacquemond ◽  
...  

ABSTRACT Tampons recovered from a cohort of 737 healthy women (median age, 32 years) were analyzed for the presence of Staphylococcus aureus. A total of 198 tampons (27%) were colonized by S. aureus, 28 (4%) by a strain producing toxic shock syndrome toxin 1 (TSST-1). S. aureus was detected more frequently in tampons that did not require an applicator for their insertion (74/233 [32%] versus 90/381 [24%]; odds ratio [OR] = 1.51 [95% confidence interval, 1.04 to 2.17]) and in women who used an intrauterine device for contraception (53/155 [34%] versus 145/572 [27%]; OR = 1.53 [95% confidence interval, 1.05 to 2.24]). The S. aureus strains isolated from tampons belonged to 22 different clonal complexes (CCs). The most prevalent CC was CC398 agr1 (n = 57 [27%]), a clone that does not produce superantigenic toxins, followed by CC30 agr3 (n = 27, 13%), producing TSST-1 (24/27 [89%]), the principal clone of S. aureus involved in menstrual toxic shock syndrome (MTSS). IMPORTANCE Menstrual toxic shock syndrome (MTSS) is an uncommon severe acute disease that occurs in healthy menstruating women colonized by TSST-1-producing S. aureus who use intravaginal protection, such as tampons and menstrual cups. The catamenial product collected by the protection serves as a growth medium for S. aureus and allows TSST-1 production. Previous studies evaluated the prevalence of genital colonization by S. aureus by vaginal swabbing, but they did not examine tampon colonization. This study demonstrated a high prevalence of tampon colonization by S. aureus and the presence of the CC30 TSST-1 S. aureus clone responsible for MTSS in tampons from healthy women. The results support the vaginal carriage of this lineage in healthy women. In addition, the higher prevalence of S. aureus within tampons that do not require an applicator indicates a crucial role for handwashing before tampon handling to decrease the risk of tampon contamination.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Hema Sharma ◽  
Claire E. Turner ◽  
Matthew K. Siggins ◽  
Mona El-Bahrawy ◽  
Bruno Pichon ◽  
...  

ABSTRACT Nonmenstrual toxic shock syndrome (nmTSS), linked to TSST-1-producing CC30 Staphylococcus aureus, is the leading manifestation of toxic shock syndrome (TSS). Due to case rarity and a lack of tractable animal models, TSS pathogenesis is poorly understood. We developed an S. aureus abscess model in HLA class II transgenic mice to investigate pathogenesis and treatment. TSST-1 sensitivity was established using murine spleen cell proliferation assays and cytokine assays following TSST-1 injection in vivo. HLA-DQ8 mice were infected subcutaneously with a tst-positive CC30 methicillin-sensitive S. aureus clinical TSS-associated isolate. Mice received intraperitoneal flucloxacillin, clindamycin, flucloxacillin and clindamycin, or a control reagent. Abscess size, bacterial counts, TSST-1 expression, and TSST-1 bioactivity were measured in tissues. Antibiotic effects were compared with the effects of control reagent. Purified TSST-1 expanded HLA-DQ8 T-cell Vβ subsets 3 and 13 in vitro and instigated cytokine release in vivo, confirming TSST-1 sensitivity. TSST-1 was detected in abscesses (0 to 8.0 μg/ml) and draining lymph nodes (0 to 0.2 μg/ml) of infected mice. Interleukin 6 (IL-6), gamma interferon (IFN-γ), KC (CXCL1), and MCP-1 were consistent markers of inflammation during infection. Clindamycin-containing antibiotic regimens reduced abscess size and TSST-1 production. Infection led to detectable TSST-1 in soft tissues, and TSST-1 was detected in draining lymph nodes, events which may be pivotal to TSS pathogenesis. The reduction in TSST-1 production and lesion size after a single dose of clindamycin underscores a potential role for adjunctive clindamycin at the start of treatment of patients suspected of having TSS to alter disease progression. IMPORTANCE Staphylococcal toxic shock syndrome (TSS) is a life-threatening illness causing fever, rash, and shock, attributed to toxins produced by the bacterium Staphylococcus aureus, mainly toxic shock syndrome toxin 1 (TSST-1). TSS was in the past commonly linked with menstruation and high-absorbency tampons; now, TSS is more frequently triggered by other staphylococcal infections, particularly of skin and soft tissue. Investigating the progress and treatment of TSS in patients is challenging, as TSS is rare; animal models do not mimic TSS adequately, as toxins interact best with human immune cells. We developed a new model of staphylococcal soft tissue infection in mice producing human immune cell proteins, rendering them TSST-1 sensitive, to investigate TSS. The significance of our research was that TSST-1 was found in soft tissues and immune organs of mice and that early treatment of mice with the antibiotic clindamycin altered TSST-1 production. Therefore, the early treatment of patients suspected of having TSS with clindamycin may influence their response to treatment.


2013 ◽  
Vol 79 (6) ◽  
pp. 1835-1842 ◽  
Author(s):  
Roderick A. MacPhee ◽  
Wayne L. Miller ◽  
Gregory B. Gloor ◽  
John K. McCormick ◽  
Jo-Anne Hammond ◽  
...  

ABSTRACTMenstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection byStaphylococcus aureusand concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduceS. aureusvirulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and that this might represent a risk factor for the development of TSS. AS. aureusTSST-1 reporter strain was grown in the presence of vaginal swab contents collected from women with a clinically healthy vaginal status, women with an intermediate status, and those diagnosed with bacterial vaginosis (BV). Bacterial supernatant challenge assays were also performed to test the effects of aerobic vaginitis (AV)-associated pathogens toward TSST-1 production. While clinical samples from healthy and BV women suppressed toxin production,in vitrostudies demonstrated thatStreptococcus agalactiaeandEnterococcusspp. significantly induced TSST-1 production, while someLactobacillusspp. suppressed it. The findings suggest that women colonized byS. aureusand with AV, but not BV, may be more susceptible to menstrual TSS and would most benefit from prophylactic treatment.


Sign in / Sign up

Export Citation Format

Share Document