scholarly journals Rapid and Concomitant Gut Microbiota and Endocannabinoidome Response to Diet-Induced Obesity in Mice

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Sébastien Lacroix ◽  
Florent Pechereau ◽  
Nadine Leblanc ◽  
Besma Boubertakh ◽  
Alain Houde ◽  
...  

ABSTRACT The intestinal microbiota and the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), have both been implicated in diet-induced obesity and dysmetabolism. These systems were recently suggested to interact during the development of obesity. We aimed at identifying the potential interactions between gut microbiota composition and the eCBome during the establishment of diet-induced obesity and metabolic complications. Male mice were fed a high-fat, high-sucrose (HFHS) diet for 56 days to assess jejunum, ileum, and cecum microbiomes by 16S rRNA gene metataxonomics as well as ileum and plasma eCBome by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HFHS diet induced early (3 days) and persistent glucose intolerance followed by weight gain and hyperinsulinemia. Concomitantly, it induced the elevation of the two eCBs, anandamide, in both ileum and plasma, and 2-arachidonoyl-glycerol, in plasma, as well as alterations in several other N-acylethanolamines and 2-acylglycerols. It also promoted segment-specific changes in the relative abundance of several genera in intestinal microbiota, some of which were observed as early as 3 days following HFHS diet. Weight-independent correlations were found between the relative abundances of, among others, Barnesiella, Eubacterium, Adlercreutzia, Parasutterella, Propionibacterium, Enterococcus, and Methylobacterium and the concentrations of anandamide and the anti-inflammatory eCBome mediator N-docosahexaenoyl-ethanolamine. This study highlights for the first time the existence of potential interactions between the eCBome, an endogenous system of multifunctional signaling lipids, and several intestinal genera during early and late HFHS-induced dysmetabolic events, with potential impact on the host capability of adapting to increased intake of fat and sucrose. IMPORTANCE The intestinal microbiota and the expanded endocannabinoid system, or endocannabinoidome, have both been implicated in diet-induced obesity and dysmetabolism. This study aims at identifying the potential interactions between these two fundamental systems—which form the gut microbiota-endocannabinoidome axis—and their involvement in the establishment of diet-induced obesity and related metabolic complications. We report here time- and segment-specific microbiome disturbances as well as modifications of intestinal and circulating endocannabinoidome mediators during high-fat, high-sucrose diet-induced glucose intolerance and subsequent obesity and hyperinsulinemia. This highlights the involvement of, and the interaction between, the gut microbiota and the endocannabinoidome during metabolic adaptation to high-fat and high-sucrose feeding. These results will help identifying actionable gut microbiome members and/or endocannabinoidome mediators to improve metabolic health.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8893 ◽  
Author(s):  
Miki Igarashi ◽  
Miku Morimoto ◽  
Asuka Suto ◽  
Akiho Nakatani ◽  
Tetsuhiko Hayakawa ◽  
...  

Background Dietary fiber, including inulin, promotes health via fermentation products, such as short-chain fatty acids (SCFAs), produced from the fiber by gut microbiota. SCFAs exert positive physiological effects on energy metabolism, gut immunity, and the nervous system. Most of the commercial inulin is extracted from plant sources such as chicory roots, but it can also be enzymatically synthesized from sucrose using inulin producing enzymes. Studies conducted on rodents fed with a cafeteria diet have suggested that while increasing plasma propionic acid, synthetic inulin modulates glucose and lipid metabolism in the same manner as natural inulin. Therefore, this study aimed to determine the effects of a synthetic inulin, Fuji FF, on energy metabolism, fecal SCFA production, and microbiota profiles in mice fed with a high-fat/high-sucrose diet. Methods Three-week-old male C57BL/6J mice were fed a high-fat/high-sucrose diet containing cellulose or Fuji FF for 12 weeks, and the effects on energy metabolism, SCFA production, and microbiota profiles were evaluated. Results Body weight gain was inhibited by Fuji FF supplementation in high-fat/high-sucrose diet-fed C57BL/6J mice by reducing white adipose tissue weight while increasing energy expenditure, compared with the mice supplemented with cellulose. Fuji FF also elevated levels of acetic, propionic and butyric acids in mouse feces and increased plasma propionic acid levels in mice. Moreover, 16S rRNA gene amplicon sequencing of fecal samples revealed an elevated abundance of Bacteroidetes and a reduced abundance of Firmicutes at the phylum level in mice supplemented with Fuji FF compared to those supplemented with cellulose. Fuji FF also resulted in abundance of the family Bacteroidales S24-7 and reduction of Desulfovibrionaceae in the feces. Conclusion Long term consumption of Fuji FF improved the gut environment in mice by altering the composition of the microbiota and increasing SCFA production, which might be associated with its anti-obesity effects.


2020 ◽  
Vol 64 ◽  
pp. 103622 ◽  
Author(s):  
Chengnan Zhang ◽  
Abdullah Abdulaziz Abbod Abdo ◽  
Benariba Kaddour ◽  
Qiuhua Wu ◽  
Liang Xin ◽  
...  

2014 ◽  
Vol 306 (6) ◽  
pp. E668-E680 ◽  
Author(s):  
Thi Thu Huong Do ◽  
Patrick Hindlet ◽  
Anne-Judith Waligora-Dupriet ◽  
Nathalie Kapel ◽  
Nathalie Neveux ◽  
...  

The oligopeptide transporter peptide cotransporter-1 Slc15a1 (PEPT1) plays a major role in the regulation of nitrogen supply, since it is responsible for 70% of the dietary nitrogen absorption. Previous studies demonstrated that PEPT1 expression and function in jejunum are reduced in diabetes and obesity, suggesting a nitrogen malabsorption from the diet. Surprisingly, we reported here a decrease in gut nitrogen excretion in high-fat diet (HFD)-fed mice and further investigated the mechanisms that could explain this apparent contradiction. Upon HFD, mice exhibited an increased concentration of free amino acids (AAs) in the portal vein (60%) along with a selective increase in the expression of two AA transporters ( Slc6a20a, Slc36a1), pointing to a specific and adaptive absorption of some AAs. A delayed transit time (+40%) and an increased intestinal permeability (+80%) also contribute to the increase in nitrogen absorption. Besides, HFD mice exhibited a 2.2-fold decrease in fecal DNA resulting from a reduction in nitrogen catabolism from cell desquamation and/or in the intestinal microbiota. Indeed, major quantitative (2.5-fold reduction) and qualitative alterations of intestinal microbiota were observed in feces of HFD mice. Collectively, our results strongly suggest that both increased AA transporters, intestinal permeability and transit time, and changes in gut microbiota are involved in the increased circulating AA levels. Modifications in nitrogen homeostasis provide a new insight in HFD-induced obesity and glucose intolerance; however, whether these modifications are beneficial or detrimental for the HFD-associated metabolic complications remains an open issue.


2020 ◽  
Vol 8 (8) ◽  
pp. 1238
Author(s):  
Fei Huang ◽  
Ruozhi Zhao ◽  
Min Xia ◽  
Garry X. Shen

The present study assessed the effects of freeze-dried cyanidin-3-glucoside (C3G), an anthocyanin enriched in dark-red berries, compared to Saskatoon berry powder (SBp) on metabolism, inflammatory markers and gut microbiota in high fat-high sucrose (HFHS) diet-induced insulin-resistant mice. Male C57 BL/6J mice received control, HFHS, HFHS + SBp (8.0 g/kg/day) or HFHS + C3G (7.2 mg/kg/day, equivalent C3G in SBp) diet for 11 weeks. The HFHS diet significantly increased plasma levels of glucose, cholesterol, triglycerides, insulin resistance and inflammatory markers. The HFHS + SBp diet increased the Bacteroidetes/Firmicutes (B/F) ratio and relative abundance of Muriculaceae family bacteria in mouse feces detected using 16S rRNA gene sequencing. The HFHS + SBp or HFHS + C3G diet attenuated glucose, lipids, insulin resistance and inflammatory markers, and increased the B/F ratio and Muriculaceae relative abundance compared to the HFHS diet alone. The relative abundances of Muriculaceae negatively correlated with body weight, glucose, lipids, insulin resistance and inflammatory mediators. Functional predication analysis suggested that the HFHS diet upregulated gut bacteria genes involved in inflammation, and downregulated bacteria involved in metabolism. C3G and SBp partially neutralized HFHS diet-induced alterations of gut bacteria. The results suggest that C3G is a potential prebiotic, mitigating HFHS diet-induced disorders in metabolism, inflammation and gut dysbiosis, and that C3G contributes to the metabolic beneficial effects of SBp.


Author(s):  
Haley A. Hallowell ◽  
Keah V. Higgins ◽  
Morgan Roberts ◽  
Robert M. Johnson ◽  
Jenna Bayne ◽  
...  

Due to its immunomodulatory potential, the intestinal microbiota has been implicated as a contributing factor in the development of the meta-inflammatory state that drives obesity-associated insulin resistance and type 2 diabetes. A better understanding of this link would facilitate the development of targeted treatments and therapies to treat the metabolic complications of obesity. To this end, we validated and utilized a novel swine model of obesity, the Mangalica pig, to characterize changes in the gut microbiota during the development of an obese phenotype, and in response to dietary differences. In the first study, we characterized the metabolic phenotype and gut microbiota in lean and obese adult Mangalica pigs. Obese or lean groups were created by allowing either ad libitum (obese) or restricted (lean) access to a standard diet for 54 weeks. Mature obese pigs were significantly heavier and exhibited 170% greater subcutaneous adipose tissue mass, with no differences in muscle mass compared to their lean counterparts. Obese pigs displayed impaired glucose tolerance and hyperinsulinemia following oral glucose challenge, indicating that a metabolic phenotype also manifested with changes in body composition. Consistent with observations in human obesity, the gut microbiota of obese pigs displayed altered bacterial composition. In the second study, we characterized the longitudinal changes in the gut microbiota in response to diet and aging in growing Mangalica pigs that were either limit fed a standard diet, allowed ad libitum access to a standard diet, or allowed ad libitum access to a high fat-supplemented diet over an 18-week period. As expected, weight gain was highest in pigs fed the high fat diet compared to ad libitum and limit fed groups. Furthermore, the ad libitum and high fat groups displayed significantly greater adiposity consistent with the development of obesity relative to the limit fed pigs. The intestinal microbiota was generally resilient to differences in dietary intake (limit fed vs ad libitum), though changes in the microbiota of pigs fed the high fat diet mirrored changes observed in mature obese pigs during the first study. This is consistent with the link observed between the microbiota and adiposity. In contrast to intestinal bacterial populations, bacteriophage populations within the gut microbiota responded rapidly to differences in diet, with significant compositional changes in bacteriophage genera observed between the dietary treatment groups as pigs aged. These studies are the first to describe the development of the intestinal microbiota in the Mangalica pig, and are the first to provide evidence that changes in body composition and dietary conditions are associated with changes in the microbiome of this novel porcine model of obesity.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102077
Author(s):  
Hu Hua ◽  
Yue Zhang ◽  
Fei Zhao ◽  
Ke Chen ◽  
Tong Wu ◽  
...  

2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


Sign in / Sign up

Export Citation Format

Share Document