scholarly journals Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level

Author(s):  
Alessio Da Ros ◽  
Andrea Polo ◽  
Carlo Giuseppe Rizzello ◽  
Marta Acin-Albiac ◽  
Marco Montemurro ◽  
...  

Knowledge on environmental factors, which may compose the gut microbiota, and drive the host physiology and health is of paramount importance. Human dietary habits and food compositions are pivotal drivers to assembly the human gut microbiota, but, inevitably, unmapped for many diet components, which are poorly investigated individually.

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 275
Author(s):  
Natsuko Matsumoto ◽  
Jonguk Park ◽  
Rie Tomizawa ◽  
Hitoshi Kawashima ◽  
Koji Hosomi ◽  
...  

Background and Objectives: The gut microbiota is associated with human health and dietary nutrition. Various studies have been reported in this regard, but it is difficult to clearly analyze human gut microbiota as individual differences are significant. The causes of these individual differences in intestinal microflora are genetic and/or environmental. In this study, we focused on differences between identical twins in Japan to clarify the effects of nutrients consumed on the entire gut microbiome, while excluding genetic differences. Materials and Methods: We selected healthy Japanese monozygotic twins for the study and confirmed their zygosity by matching 15 short tandem repeat loci. Their fecal samples were subjected to 16S rRNA sequencing and bioinformatics analyses to identify and compare the fluctuations in intestinal bacteria. Results: We identified 12 genera sensitive to environmental factors, and found that Lactobacillus was relatively unaffected by environmental factors. Moreover, we identified protein, fat, and some nutrient intake that can affect 12 genera, which have been identified to be more sensitive to environmental factors. Among the 12 genera, Bacteroides had a positive correlation with retinol equivalent intake (rs = 0.38), Lachnospira had a significantly negative correlation with protein, sodium, iron, vitamin D, vitamin B6, and vitamin B12 intake (rs = −0.38, −0.41, −0.39, −0.63, −0.42, −0.49, respectively), Lachnospiraceae ND3007 group had a positive correlation with fat intake (rs = 0.39), and Lachnospiraceae UCG-008 group had a negative correlation with the saturated fatty acid intake (rs = −0.45). Conclusions: Our study is the first to focus on the relationship between human gut microbiota and nutrient intake using samples from Japanese twins to exclude the effects of genetic factors. These findings will broaden our understanding of the more intuitive relationship between nutrient intake and the gut microbiota and can be a useful basis for finding useful biomarkers that contribute to human health.


2021 ◽  
Author(s):  
Lu Ling ◽  
Jun Zhou ◽  
Qianlong Meng ◽  
Ziran Zhang ◽  
Wenkun Li ◽  
...  

Gut microbiota dysbiosis is associated with a variety of diseases, such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), metabolic diseases, allergic diseases, neurodevelopmental disorders and cancer. The human gut microbiota can be influenced by a variety of factors, including geography, dietary habits, living environment, age and altered lifestyle etc. This study was conducted to explore the gut microbiota compositions in officials who are in a stable working environment and train drivers who are in a dynamic working environment. Microbiota communities in the feces of 80 officials and 88 train drivers were analyzed using Illumina MiSeq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA) gene and ITS1 region of fungi. There were significant differences between the two groups in diversity and richness of gut microbiota, while the microbial community compositions of the two groups were similar. The relationship between gut microbiota and clinical characteristics was investigated. We found that more bacteria and fungi were positively correlated with clinical characteristics. Functional prediction analysis of the gut microbiota between the two groups by PICRUSt2 revealed significant differences between the official group and the train driver group. Elucidating these differences of the microbiome between the two groups will provide a foundation understanding of the impact of a dynamic environment on gut microbiota.


Medicina ◽  
2020 ◽  
Vol 56 (2) ◽  
pp. 88 ◽  
Author(s):  
Hercules Sakkas ◽  
Petros Bozidis ◽  
Christos Touzios ◽  
Damianos Kolios ◽  
Georgia Athanasiou ◽  
...  

The human gut microbiota is considered a well-known complex ecosystem composed of distinct microbial populations, playing a significant role in most aspects of human health and wellness. Several factors such as infant transitions, dietary habits, age, consumption of probiotics and prebiotics, use of antibiotics, intestinal comorbidities, and even metabolic diseases may continously alter microbiota diversity and function. The study of vegan diet–microbiota interactions is a rapidly evolving field, since plenty of research has been focused on the potential effects of plant-based dietary patterns on the human gut microbiota. It has been reported that well-planned vegan diets and their associated components affect both the bacterial composition and metabolic pathways of gut microbiota. Certain benefits associated with medical disorders but also limitations (including nutritional deficiencies) have been documented. Although the vegan diet may be inadequate in calorific value, it is rich in dietary fiber, polyphenols, and antioxidant vitamins. The aim of the present study was to provide an update of the existing knowledge on nutritional status of vegan diets and the influence of their food components on the human gut microbiota and health.


2018 ◽  
Author(s):  
Daniel A. Medina

The gut microbiota has been shown to have an important influence on host health. Microbial composition of the gut microbiota is modulated by diet and human habits. The composition of human gut microbiota changes with age; and alterations in this composition may influence human health. It has been reported that microbiota composition of each individual is stable across the adult life, but it may varies between individuals. Moreover, human gut microbiota composition differs across geography, according to host genetics, dietary habits, age, ethnic origin, geographic location and lifestyle. Nevertheless, gene composition or functional capacity is highly conserved across individuals, phenomenon known as functional redundancy. Although metatranscriptomics can study the mature mRNA from a microbiome sample, it is impossible identify who bacteria is actively transcribing the genes who drives the molecular expression. The use of genome-wide methodologies to study the active mRNA synthesis could be useful to identify the bacterial population who drives gene expression in microbiome environment.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document