Magnetic properties of Lake Lisan and Holocene Dead Sea sediments and the fidelity of chemical and detrital remanent magnetization

Author(s):  
Hagai Ron ◽  
Norbert R. Nowaczyk ◽  
Ute Frank ◽  
Shmuel Marco ◽  
Michael O. McWilliams
2019 ◽  
Vol 34 (01) ◽  
pp. 2050002
Author(s):  
Wei Zhang ◽  
Aimin Sun ◽  
Xiqian Zhao ◽  
Xiaoguang Pan ◽  
Yingqiang Han

Manganese substituted nickel–copper–cobalt ferrite nanoparticles having the basic composition [Formula: see text] (x = 0.0, 0.1, 0.2, 0.3 and 0.4) were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) was used to estimate phase purity and lattice symmetry. All the prepared samples show the single-phase cubic spinel structure. Fourier transform infrared (FTIR) measurements also confirm the cubic spinel structure of the ferrite that is formed. The preparation of samples show these nearly spherical particles by Transmission electron microscopy (TEM). The magnetic properties of Mn[Formula: see text] ion substituted in nickel–copper–cobalt ferrite were studied by Vibrating sample magnetometer (VSM). The saturation magnetization ([Formula: see text]), remanent magnetization [Formula: see text], coercivity [Formula: see text], magnetic moment [Formula: see text] and anisotropy constant [Formula: see text] first increase and then decrease with the increase of [Formula: see text] ions content. They had better magnetism than pure sample and other substituted samples when the substitution amount of [Formula: see text] ions was [Formula: see text]. At [Formula: see text], the maximum values of remanent magnetization [Formula: see text], saturation magnetization [Formula: see text] and coercivity [Formula: see text] are 25.58 emu/g, 61.95 emu/g and 689.76 Oe, respectively. This indicates that the magnetism of ferrite can improve by substituting with the appropriate amount of manganese. However, due to the excess [Formula: see text] ions instead, ferrite magnetism is weakened. This means that these materials can be used in magnetic data storage and recording media.


2020 ◽  
Vol 79 (20) ◽  
Author(s):  
Seungwoo Lee ◽  
Seoyeon Kim ◽  
Hyeji Kim ◽  
Youlee Seo ◽  
Yeoncheol Ha ◽  
...  

Abstract The present study was designed to explore the possibility of roadside pollution screening using magnetic properties of topsoil samples in Daejeon, South Korea. Low-field magnetic susceptibility, frequency dependence of magnetic susceptibility, susceptibility of anhysteretic remanent magnetization, isothermal remanent magnetization (IRM) acquisition and demagnetization, back-field IRM treatment, and thermal demagnetization of composite IRM were determined for roadside topsoil samples. Magnetic susceptibility measured on 238 samples from the upper 5 cm of the topsoils ranged from 8.6 to 82.5 × 10–5 SI with a mean of 28.3 ± 10.8 × 10–5 SI. The proximal zone, 55 m wide area situated on either side of the main street, exhibited an enhancement of magnetic susceptibility. In areas distant from the main street, low magnetic susceptibility (< 50 × 10–5 SI) was observed. The topsoil samples exhibited significant susceptibility contrasts, suggesting that two dimensional magnetic mapping was effective in identifying traffic-related pollution. A few magnetic hotspots with intensities of magnetic susceptibility near or over 50 × 10–5 SI might reflect the difference in topographic elevation and surface morphology. Among various IRM-related parameters, remanence of coercivity was most significant statistically. In most samples, IRM component analysis provided dual coercivity components. Thermal demagnetization of composite IRM and morphological observation of magnetic separates suggest angular magnetite produced by vehicle non-exhaust emissions spherical magnetite derived from exhaust emission to be the dominant contributors to the magnetic signal. It is likely that lower- and higher-coercivity components represent the presence of coarse-grained angular magnetite and fine-grained spherical magnetite, respectively.


2020 ◽  
Vol 62 (9) ◽  
pp. 1527
Author(s):  
П.В. Харитонский ◽  
А.А. Костеров ◽  
А.К. Гурылёв ◽  
К.Г. Гареев ◽  
С.А. Кириллова ◽  
...  

In this work, the materials of FemOn – Fe3-xTixO4 composition have been obtained using the sol-gel method and hydrothermal treatment. The synthesis conditions favor the formation of composites containing titanomagnetite in a rather low concentration. Based on the hysteresis curves and temperature dependences of the remanent magnetization, theoretical analysis of the composites magnetic properties has been carried out using a model of clustered two-phase particles bound with magnetostatic interaction.


SPIN ◽  
2017 ◽  
Vol 07 (04) ◽  
pp. 1750011 ◽  
Author(s):  
A. Jabar ◽  
R. Masrour ◽  
M. Hamedoun ◽  
A. Benyoussef

A cylindrical ferrimagnetic magnetic nanowire system of core and shell layers has been investigated using Monte Carlo simulation. Critical temperature is obtained for different values of exchange couplings at the core–shell interface, at shell–shell and core–core. The total magnetization has been the determinate for different values of crystal field. Hysteresis loop, coercive field and remanent magnetization of a core and shell layers are obtained using the Monte Carlo simulation. A number of characteristic behaviors are found, such as the occurrence of single and triple hysteresis loops for appropriate values of crystal field, temperatures values and exchange interaction values.


2003 ◽  
Vol 58 (6) ◽  
pp. 497-500 ◽  
Author(s):  
Gunter Kotzybaa ◽  
Ratikanta Mishrab ◽  
Rainer Pöttgena

The Mo2FeB2 type magnesium intermetallics RE2Cu2Mg (RE = Y, La, Pr, Nd) were synthesized from the elements by reactions in sealed tantalum tubes in a high-frequency furnace. Temperature-dependent magnetic susceptibility measurements of Y2Cu2Mg and La2Cu2Mg indicate Pauli paramagnetism. Pr2Cu2Mg and Nd2Cu2Mg show Curie-Weiss behaviour with experimental magnetic moments of 3.67(2) μB/Pr and 3.47(2) μB/Nd, respectively. Both compounds are ordered ferromagnetically at Curie temperatures of 12.0(5) (Pr2Cu2Mg) and 43.0(5) K (Nd2Cu2Mg). Pr2Cu2Mg shows a very complex magnetization behavior with an additional magnetic transition around 2.5 T. The neodymium compound shows a pronounced square loop behavior in the magnetization at 4.5 K with a high remanent magnetization of 1.55(1) μB/Nd atom and a coercive field of 0.31(1) T.


1990 ◽  
Vol 164-165 ◽  
pp. 1285-1291 ◽  
Author(s):  
Ch.J. Liu ◽  
R. Buder ◽  
C. Schlenker ◽  
J. Schubert ◽  
W. Zander ◽  
...  

2015 ◽  
Vol 233-234 ◽  
pp. 310-313
Author(s):  
L.V. Nikitin ◽  
A.A. Gladkov ◽  
A.E. Korovushkin

Several samples of magnetic hydrogels (also known as ferrogels) are prepared, and their magnetic properties are examined. Polyacrylamide gel is used as the base. Gel matrices are filled with the nanopowder: iron particles with the mean size about 30 nm. The magnetization curves of the samples are measured at different stages of de-swelling. The dependencies of such parameters of magnetization curves as coercive field, remanent magnetization from concentration of magnetic particles in the sample along the process of drying were investigated.


Author(s):  
Anish Kumar Warrier ◽  
Joju George Sebastian ◽  
K. Amrutha ◽  
A. S. Yamuna Sali ◽  
B. S. Mahesh ◽  
...  

Abstract Purpose We investigated the magnetic properties (abundance, grain size, and mineralogy) of iron oxides present in Lake L-55 sediments, Schirmacher Oasis, East Antarctica, with an aim to understand their spatial distribution and the underlying mechanisms that control their formation and distribution. Methods Twenty-five surficial sediments retrieved from different parts of Lake L-55 were subjected to the entire range of environmental magnetic (magnetic susceptibility, anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM)) measurements (at different field strengths). Inter-parametric ratios (χARM/SIRM, χARM/χlf, χARM/χfd, IRM20 mT/SIRM, IRM20 mT/ARM, S-ratio, L-ratio) provided insights into the magnetic properties (abundance, grain size, and mineralogy of iron oxides). Scanning electron microscopic-energy dispersive X-ray spectroscopic (SEM-EDS) analysis was performed on magnetic extracts from a few sediments. Besides, organic matter (%) was also calculated for the sediment samples. Principal component analysis was performed to gain information on the presence of different components and their relative dominance. Results The iron oxides are strongly magnetic (high values of concentration-dependent parameters). The principal iron oxide is magnetite (S-ratio > 0.90) which is coarse-grained (multi-domain (MD) and stable single-domain (SSD) grains), and there is no influence of authigenic greigite, bacterial magnetite, and anthropogenic magnetite. The mineralogy is confirmed by SEM-EDS data. The iron oxides are of different grain sizes, and their contribution is in the order of MD > SSD > SP as shown by the principal component analysis. Pedogenic iron oxide minerals seem to be present in the samples whose formation is due to the oxidation of magnetite into hematite. However, they are of SSD size and not SP, suggesting that the intensity of pedogenesis is not sufficient to form SP grains. Conclusion The iron oxide minerals are mainly terrigenous, and the biogenic activity within the lake is not sufficient to modify the ferrimagnetic minerals. Spatial distribution patterns suggest the non-uniform distribution of magnetite/titanomagnetite of varying sizes in the lake basin which is transported by both melt water streams and winds.


Sign in / Sign up

Export Citation Format

Share Document