CHLORIDE AND SULFATE EXCHANGE IN SHORT-TERM, LOW TEMPERATURE BRINE + JAROSITE EXPERIMENTS

2016 ◽  
Author(s):  
Kayla M. Miller ◽  
◽  
Andrew S. Elwood Madden ◽  
Janice L. Bishop ◽  
Charity Phillips-Lander ◽  
...  
Keyword(s):  
Wear ◽  
2021 ◽  
pp. 203732
Author(s):  
Quanshun Luo ◽  
Jianbin Li ◽  
Qintai Yan ◽  
Wenbo Li ◽  
Yubi Gao ◽  
...  

2021 ◽  
Vol 141 ◽  
pp. 110824
Author(s):  
Yongliang Shen ◽  
Shuli Liu ◽  
Abdur Rehman Mazhar ◽  
Xiaojing Han ◽  
Liu Yang ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 609
Author(s):  
Jianghua Liao ◽  
Juan Liu ◽  
Zhijian Guan ◽  
Chao Li

The Colorado potato beetle is a serious pest of Solanaceae in China. In early summer, cold spells in later spring may occur for brief periods in the field environmental conditions, and temperatures often deviate far below the normal temperature for short periods, such as sudden short-term low temperature, may affect the development of Colorado potato beetle eggs. This paper studies the effects of low temperature stress at 8 °C for 0 d, 1 d, 3 d, 5 d, 7 d, and 10 d on the development of Colorado potato beetle eggs. Our results show that egg survival is significantly affected by short-term low temperature exposure. The percentage of eggs hatched is significantly affected by different treatment times (p = 0.000)—the percentage of eggs hatched decreases with increased treatment time, and Colorado potato beetles will extend the wintering time of their soil to resist the effects of lower temperatures. Thus, exposure of Colorado potato beetles to a short-term low temperature affects their emergence and population growth; this study could provide information for the occurrence, monitoring, and early warning of Colorado potato beetle during short-term temperature.


Author(s):  
Zhurinov M.Zh., ◽  
◽  
Teltayev B.B., ◽  
Kalybay A.A., ◽  
Rossi C.O., ◽  
...  

A comparative analysis of the low temperature resistance for a nanocarbon bitumen and other 30 neat and modified bitumens has been performed in the work. The stiffness at the temperatures of -24°С, -30°С and -36°С under technical system Superpave has been accepted as an indicator of low temperature resistance of the bitumens. The stiffness of the bitumens has been determined on a bending beam rheometer (standard ASTM D 6648-08). Before testing the bitumens have been subjected to the double artificial aging: short-term aging – under standard AASHTO Т 240-13 and long-term aging – under standard ASTM D 6521-08. The nanocarbon bitumen has been prepared in the laboratory of the Kazakhstan Highway Research Institute (KazdorNII) with the use of a road bitumen of the grade BND 70/100 produced by the Pavlodar petrochemical plant (PNHZ) and a nanocarbon powder (2% by weight) manufactured from a coal rock of the deposit “Saryadyr” “Corporation “ON-Olzha” LLP, Akmola region, Kazakhstan). The nanocarbon powder (150-200 nm) has been manufactured by three-stage size reduction of the coal rock: I – a mechanical dispergator (up to 2-3 mm), II – an aerodynamic mill (up to 20 mcm), III – a reactor with a rotating electromagnetic field. The neat bitumens of the grades BND 50/70, BND 70/100, BND 100/130 have been produced by the plants of Kazakhstan and Russia; they satisfy the requirements of the standard ST RK 1373-2013. The modified bitumens have been prepared in the laboratory of KazdorNII with the use of the neat bitumens, 7 types of the polymers, crumb rubber and polyphosphoric acid and they satisfy the requirements of the standard ST RK 2534-2014. It has been determined that the nanocarbon bitumen is one of the most resistant at the low temperatures: -24°С, -30°С and -36°С.


1991 ◽  
Vol 71 (2) ◽  
pp. 353-359 ◽  
Author(s):  
M. Tollenaar ◽  
M. Mihajlovic ◽  
A. Aguilera

Studies were conducted to investigate whether genetic improvement in dry matter accumulation of maize (Zea mays L.) hybrids recommended in Ontario from the late 1950s to the late 1980s is associated with cold-temperature tolerance during early phases of development. The maize hybrids Pride 5 (released in 1959) and Pioneer 3902 (released in 1988) were compared at 16/7, 23/14, and 33/24 °C under a 16-h photoperiod with a photosynthetic photon flux density of 650 μmol m−2 s−1 in long-term and short-term temperature experiments conducted in controlled-environment cabinets. In the long-term temperature experiment, plants were grown at the three temperature regimes from the 4- to the 12-leaf stage. Total and plant component dry matter was determined at the 8-, 10-, and 12-leaf stage, and leaf photosynthesis and chlorophyll fluorescence were measured at the 10-leaf stage. In the short-term temperature experiment, plants were exposed to the three temperature regimes during a 3-d period after the 9-leaf stage, followed by 2 d at 23/14 °C. Dry matter accumulation during the 5-d period was measured and leaf photosynthesis and chlorophyll fluorescence were measured during each of the last 3 d of the 5-d period. Results showed a highly significant temperature effect on all measured parameters. Dry matter of Pride 5 at the 10-leaf stage was higher than that of Pioneer 3902, but rates of dry matter accumulation and leaf photosynthesis did not differ among hybrids, and hybrid × temperature interactions were not significant for these parameters. Hybrid × temperature interactions were significant for dry matter partitioning and the fluorescence parameter Fv/Fm, suggesting better low-temperature tolerance for Pride 5. Results of the short-term temperature study showed a significant hybrid × temperature interaction for dry matter accumulation, with Pride 5 higher than Pioneer 3902 at the low temperature regime and Pride 5 lower than Pioneer 3902 at the high temperature regime. Results of these experiments suggest that improvement over the past 30 yr of Ontario maize hybrids is not associated with improved low-temperature tolerance during early development. Key words: Maize, low-temperature tolerance, dry matter accumulation, dry matter partitioning, photosynthesis, chlorophyll fluorescence


Sign in / Sign up

Export Citation Format

Share Document