ANATOMY OF A SUBDUCTION PLATE INTERFACE DOWNDIP OF THE SEISMOGENIC ZONE: THE LEECH RIVER SHEAR ZONE, VANCOUVER ISLAND

2019 ◽  
Author(s):  
James Kirkpatrick ◽  
◽  
Caroline Seyler
2012 ◽  
Vol 518-521 ◽  
pp. 63-83 ◽  
Author(s):  
Nancy A. Price ◽  
Scott E. Johnson ◽  
Christopher C. Gerbi ◽  
David P. West
Keyword(s):  

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Alexander D. J. Lusk ◽  
John P. Platt

Abstract Below the seismogenic zone, faults are expressed as zones of distributed ductile strain in which minerals deform chiefly by crystal plastic and diffusional processes. We present a case study from the Caledonian frontal thrust system in northwest Scotland to better constrain the geometry, internal structure, and rheology of a major zone of reverse-sense shear below the brittle-to-ductile transition (BDT). Rocks now exposed at the surface preserve a range of shear zone conditions reflecting progressive exhumation of the shear zone during deformation. Field-based measurements of structural distance normal to the Moine Thrust Zone, which marks the approximate base of the shear zone, together with microstructural observations of active slip systems and the mechanisms of deformation and recrystallization in quartz, are paired with quantitative estimates of differential stress, deformation temperature, and pressure. These are used to reconstruct the internal structure and geometry of the Scandian shear zone from ~10 to 20 km depth. We document a shear zone that localizes upwards from a thickness of >2.5 km to <200 m with temperature ranging from ~450–350°C and differential stress from 15–225 MPa. We use estimates of deformation conditions in conjunction with independently calculated strain rates to compare between experimentally derived constitutive relationships and conditions observed in naturally-deformed rocks. Lastly, pressure and converted shear stress are used to construct a crustal strength profile through this contractional orogen. We calculate a peak shear stress of ~130 MPa in the shallowest rocks which were deformed at the BDT, decreasing to <10 MPa at depths of ~20 km. Our results are broadly consistent with previous studies which find that the BDT is the strongest region of the crust.


2021 ◽  
Author(s):  
Cailey Condit ◽  
Victor Guevara ◽  
Melodie French ◽  
Adam Holt ◽  
Jonathan Delph

<p>Feedbacks amongst petrologic and mechanical processes along the subduction plate boundary play a central role influencing slip behaviors and deformation styles. Metamorphic reactions, resultant fluid production, deformation mechanisms, and strength are strongly temperature dependent, making the thermal structure of these zones a key control on slip behaviors.</p><p> </p><p>Firstly, we investigate the role of metamorphic devolatilization reactions in the production of Episodic Tremor and Slip (ETS) in warm subduction zones. Geophysical and geologic observations of ETS hosting subduction zones suggest the plate interface is fluid-rich and critically stressed, which together, suggests that this area is a zone of near lithostatic pore fluid pressure.  Fluids and high pore fluid pressures have been invoked in many models for ETS. However, whether these fluids are sourced from local dehydration reactions in particular lithologies, or via up-dip transport from greater depths remains an open question. We present thermodynamic models of the petrologic evolution of four lithologies typical of the plate interface along predicted pressure–temperature (P-T) paths for the plate boundary along Cascadia, Nankai, and Mexico which all exhibit ETS at depths between 25-65 km. Our models suggest that 1-2 wt% H<sub>2</sub>O is released at the depths of ETS along these subduction segments due to punctuated dehydration reactions within MORB, primarily through chlorite and/or lawsonite breakdown. These reactions produce sufficient in-situ fluid across this narrow P-T range to cause high pore fluid pressures. Punctuated dehydration of oceanic crust provides the dominant source of fluids at the base of the seismogenic zone in these warm subduction margins, and up-dip migration of fluids from deeper in the subduction zone is not required to produce ETS-facilitating high pore fluid pressures. These dehydration reactions not only produce metamorphic fluids at these depths, but also result in an increased strength of viscous deformation through the breakdown of weak hydrous phases (e.g., chlorite, glaucophane) and the growth of stronger minerals (e.g., garnet, omphacite, Ca-amphibole). Lastly, we present preliminary data on viscosity along warm subduction paths showing the locations of these dehydration pulses correlate with viscosity increases in mafic lithologies along the shallow forarc.</p>


Geology ◽  
2021 ◽  
Author(s):  
Luca Menegon ◽  
Åke Fagereng

Fluid-pressure cycles are commonly invoked to explain alternating frictional and viscous deformation at the base of the seismogenic crust. However, the stress conditions and geological environment of fluid-pressure cycling are unclear. We address this problem by detailed structural investigation of a vein-bearing shear zone at Sagelvvatn, northern Norwegian Caledonides. In this dominantly viscous shear zone, synkinematic quartz veins locally crosscut mylonitic fabric at a high angle and are rotated and folded with the same sense of shear as the mylonite. Chlorite thermometry indicates that both veining and mylonitization occurred at ~315–400 °C. The vein-filled fractures are interpreted as episodically triggered by viscous creep in the mylonite, where quartz piezometry and brittle failure modes are consistent with low (18–44 MPa) differential stress. The Sagelvvatn shear zone is a stretching shear zone, where elevated pressure drives a hydraulic gradient that expels fluids from the shear zone to the host rocks. In low-permeability shear zones, this hydraulic gradient facilitates buildup of pore-fluid pressure until the hydrofracture criterion is reached and tensile fractures open. We propose that hydraulic gradients established by local and cyclic pressure variations during viscous creep can drive episodic fluid escape and result in brittle-viscous fault slip at the base of the seismogenic crust.


2010 ◽  
Vol 10 ◽  
pp. 14-25 ◽  
Author(s):  
M. B. Underwood ◽  
S. Saito ◽  
Y. Kubo ◽  

The primary goals during Expedition 322 of the Integrated Ocean Drilling Program were to sample and log the incoming sedimentary strata and uppermost igneous basement of the Shikoku Basin, seaward of the Nankai Trough (southwestern Japan). Characterization of these subduction inputs is one piece of the overall science plan for the Nankai Trough Seismogenic Zone Experiment. Before we can assess how various material properties evolve down the dip of the plate interface, and potentially change the fault’s behavior from stable sliding to seismogenic slip, we must determine the initial pre-subduction conditions. Two sites were drilled seaward of the trench to demonstrate how facies character and sedimentation rates responded to bathymetric architecture. Site C0011 is located on the northwest flank of a prominent basement high (Kashinosaki Knoll), and Site C0012 is located near the crest of the seamount. Even though significant gaps remain in the coring record, and attempts to recover wireline logs at Site C0012 failed, correlations can be made between stratigraphic units at the two sites. Sedimentation rates slowed down throughout the condensed section above the basement high, but the seafloor relief was never high enough during the basin’s evolution to prevent the accumulation of sandy turbidites near the crest of the seamount. We discovered a new stratigraphic unit, the middle Shikoku Basin facies, which is typified by late Miocene volcaniclastic turbidites. The sediment-basalt contact was recovered intact at Site C0012, giving a minimum basement age of 18.9 Ma. Samples of interstitial water show a familiar freshening trend with depth at Site C0011, but chlorinity values at Site C0012 increase above the values for seawater toward the basement contact. The geochemical trends at Site C0012 are probably a response to hydration reactions in the volcaniclastic sediment and diffusional exchange with seawater-like fluid in the upper igneous basement. These data are important because they finally establish an authentic geochemical reference site for Nankai Trough, unaffected by dehydration reactions, and they provide evidence for active fluid flow within the upper igneous crust. Having two sets of geochemical profiles also shows a lack of hydrogeological connectivity between the flank and the crest of the Kashinosaki Knoll. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.10.02.2010" target="_blank">10.2204/iodp.sd.10.02.2010</a>


Author(s):  
J Tago ◽  
V M Cruz-Atienza ◽  
C Villafuerte ◽  
T Nishimura ◽  
V Kostoglodov ◽  
...  

Summary To shed light on the prevalently slow, aseismic slip interaction between tectonic plates, we developed a new static slip inversion strategy, the ELADIN (ELastostatic ADjoint INversion) method, that uses the adjoint elastostatic equations to compute the gradient of the cost function. ELADIN is a 2-step inversion algorithm to efficiently handle plausible slip constraints. First it finds the slip that best explains the data without any constraint, and then refines the solution by imposing the constraints through a Gradient Projection Method. To obtain a selfsimilar, physically-consistent slip distribution that accounts for sparsity and uncertainty in the data, ELADIN reduces the model space by using a von Karman regularization function that controls the wavenumber content of the solution, and weights the observations according to their covariance using the data precision matrix. Since crustal deformation is the result of different concomitant interactions at the plate interface, ELADIN simultaneously determines the regions of the interface subject to both stressing (i.e., coupling) and relaxing slip regimes. For estimating the resolution, we introduce a mobile checkerboard analysis that allows to determine lower-bound fault resolution zones for an expected slip-patch size and a given stations array. We systematically test ELADIN with synthetic inversions along the whole Mexican subduction zone and use it to invert the 2006 Guerrero Slow Slip Event (SSE), which is one of the most studied SSEs in Mexico. Since only 12 GPS stations recorded the event, careful regularization is thus required to achieve reliable solutions. We compared our preferred slip solution with two previously published models and found that our solution retains their most reliable features. In addition, although all three SSE models predict an upward slip penetration invading the seismogenic zone of the Guerrero seismic gap, our resolution analysis indicates that this penetration might not be a reliable feature of the 2006 SSE.


2020 ◽  
Author(s):  
Raymundo Plata-Martínez ◽  
Satoshi Ide ◽  
Masanao Shinohara ◽  
Emmanuel Soliman Garcia Mortel ◽  
Naoto Mizuno ◽  
...  

Abstract The Guerrero seismic gap is presumed to be a major source of seismic and tsunami hazard along the Mexican subduction zone. Until recently, there were limited observations to describe the shallow portion of the plate interface in Guerrero. For this reason, we deployed offshore instrumentation to gain new seismic data and identify the extent of the seismogenic zone inside the Guerrero gap. We discovered episodic shallow tremors and potential slow slip events which, together with repeating earthquakes, seismicity, residual gravity and residual bathymetry suggest that a portion of the shallow plate interface in the Guerrero seismic gap undergoes stable slip. This mechanical condition may not only explain the long return period of large earthquakes with origins inside the Guerrero seismic gap, but also reveal why the rupture from past M<8 earthquakes on adjacent megathrust fault segments did not propagate into the gap to encompass a larger slip area. Nevertheless, a large enough earthquake initiating nearby could rupture through the entire Guerrero seismic gap if driven by dynamic rupture effects.


Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1408-1424 ◽  
Author(s):  
Geoffrey A. Abers ◽  
Peter E. van Keken ◽  
Cian R. Wilson

Abstract The plate interface undergoes two transitions between seismogenic depths and subarc depths. A brittle-ductile transition at 20–50 km depth is followed by a transition to full viscous coupling to the overlying mantle wedge at ∼80 km depth. We review evidence for both transitions, focusing on heat-flow and seismic-attenuation constraints on the deeper transition. The intervening ductile shear zone likely weakens considerably as temperature increases, such that its rheology exerts a stronger control on subduction-zone thermal structure than does frictional shear heating. We evaluate its role through analytic approximations and two-dimensional finite-element models for both idealized subduction geometries and those resembling real subduction zones. We show that a temperature-buffering process exists in the shear zone that results in temperatures being tightly controlled by the rheological strength of that shear zone’s material for a wide range of shear-heating behaviors of the shallower brittle region. Higher temperatures result in weaker shear zones and hence less heat generation, so temperatures stop increasing and shear zones stop weakening. The net result for many rheologies are temperatures limited to ≤350–420 °C along the plate interface below the cold forearc of most subduction zones until the hot coupled mantle is approached. Very young incoming plates are the exception. This rheological buffering desensitizes subduction-zone thermal structure to many parameters and may help explain the global constancy of the 80 km coupling limit. We recalculate water fluxes to the forearc wedge and deep mantle and find that shear heating has little effect on global water circulation.


2019 ◽  
Vol 91 (1) ◽  
pp. 237-247 ◽  
Author(s):  
Lidong Bie ◽  
Andreas Rietbrock ◽  
Stephen Hicks ◽  
Robert Allen ◽  
Jon Blundy ◽  
...  

Abstract The Lesser Antilles arc is only one of two subduction zones where slow‐spreading Atlantic lithosphere is consumed. Slow‐spreading may result in the Atlantic lithosphere being more pervasively and heterogeneously hydrated than fast‐spreading Pacific lithosphere, thus affecting the flux of fluids into the deep mantle. Understanding the distribution of seismicity can help unravel the effect of fluids on geodynamic and seismogenic processes. However, a detailed view of local seismicity across the whole Lesser Antilles subduction zone is lacking. Using a temporary ocean‐bottom seismic network we invert for hypocenters and 1D velocity model. A systematic search yields a 27 km thick crust, reflecting average arc and back‐arc structures. We find abundant intraslab seismicity beneath Martinique and Dominica, which may relate to the subducted Marathon and/or Mercurius Fracture Zones. Pervasive seismicity in the cold mantle wedge corner and thrust seismicity deep on the subducting plate interface suggest an unusually wide megathrust seismogenic zone reaching ∼65  km depth. Our results provide an excellent framework for future understanding of regional seismic hazard in eastern Caribbean and the volatile cycling beneath the Lesser Antilles arc.


Sign in / Sign up

Export Citation Format

Share Document