scholarly journals Deep decoupling in subduction zones: Observations and temperature limits

Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1408-1424 ◽  
Author(s):  
Geoffrey A. Abers ◽  
Peter E. van Keken ◽  
Cian R. Wilson

Abstract The plate interface undergoes two transitions between seismogenic depths and subarc depths. A brittle-ductile transition at 20–50 km depth is followed by a transition to full viscous coupling to the overlying mantle wedge at ∼80 km depth. We review evidence for both transitions, focusing on heat-flow and seismic-attenuation constraints on the deeper transition. The intervening ductile shear zone likely weakens considerably as temperature increases, such that its rheology exerts a stronger control on subduction-zone thermal structure than does frictional shear heating. We evaluate its role through analytic approximations and two-dimensional finite-element models for both idealized subduction geometries and those resembling real subduction zones. We show that a temperature-buffering process exists in the shear zone that results in temperatures being tightly controlled by the rheological strength of that shear zone’s material for a wide range of shear-heating behaviors of the shallower brittle region. Higher temperatures result in weaker shear zones and hence less heat generation, so temperatures stop increasing and shear zones stop weakening. The net result for many rheologies are temperatures limited to ≤350–420 °C along the plate interface below the cold forearc of most subduction zones until the hot coupled mantle is approached. Very young incoming plates are the exception. This rheological buffering desensitizes subduction-zone thermal structure to many parameters and may help explain the global constancy of the 80 km coupling limit. We recalculate water fluxes to the forearc wedge and deep mantle and find that shear heating has little effect on global water circulation.

2020 ◽  
Author(s):  
Zoe Braden ◽  
Whitney Behr

<p>The plate interface in subduction zones accommodates a wide range of seismic styles over different depths as a function of pressure-temperature conditions, compositional and fluid-pressure heterogeneities, deformation mechanisms, and degrees of strain localization. The shallow subduction interface (i.e. ~2-10 km subduction depths), in particular, can exhibit either slow slip events (e.g. Hikurangi) or megathrust earthquakes (e.g. Tohoku). To evaluate the factors governing these different slip behaviors, we need better constraints on the rheological properties of the shallow interface. Here we focus on exhumed rocks within the Chugach Complex of southern Alaska, which represents the Jurassic to Cretaceous shallow subduction interface of the Kula and North American plates. The Chugach is ideal because it exhibits progressive variations in subducted rock types through time, minimal post-subduction overprinting, and extensive along-strike exposure (~250 km). Our aims are to use field structural mapping, geochronology, and microstructural analysis to examine a) how strain is localized in different subducted protoliths, and b) the deformation processes, role of fluids, and strain localization mechanisms within each high strain zone. We interpret these data in the context of the relative ‘strengths’ of different materials on the shallow interface and possible styles of seismicity.  </p><p>Thus far we have characterized deformation features along a 1.25-km-thick melange belt within the Turnagain Arm region southeast of Anchorage.  The westernmost melange unit is sediment poor and consists of deep marine rocks with more chert, shale and mafic rocks than units to the east. The melange fabric is variably developed (weakly to strongly) throughout the unit and is steeply (sub-vertical) west-dipping with down-dip lineations. Quartz-calcite-filled dilational cracks are oriented perpendicular to the main melange fabric.</p><p>Drone imaging and structural mapping reveals 3 major discrete shear zones and 6-7 minor shear zones within the melange belt, all of which exhibit thrust kinematics. Major shear zones show a significant and observable strain gradient into a wide (~1 m) region of high strain and deform large blocks while minor shear zones are generally developed in narrow zones (~10-15 cm) of high strain between larger blocks. One major shear zone is developed in basalt and has closely-spaced, polished slip surfaces that define a facoidal texture; the basalt shear zone is ~1 m thick. Preserved pillows are observable in lower strain areas on either side of the shear zone but are deformed and indistinguishable within the high strain zone. The other two major shear zones are developed in shale and are matrix-supported with wispy, closely-spaced foliation and rotated porphyroclasts of chert and basalt; the shale shear zones are ~0.5-2 m thick.  </p><p>Abundant quartz-calcite veins parallel to the melange fabric and within shale shear zones record multiple generations of fluid-flow; early veins appear to be more silicic and later fluid flow involved only calcite precipitation. At the west, trench-proximal end of the mélange unit there is a 5-10 m thick silicified zone of fluid injection that is bound on one side by the basalt shear zone. Fluid injection appears to pre-date or be synchronous with shearing.</p>


2017 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle-ductile transition and seismogenesis. In subduction environment, switching in deformation mode and mechanisms may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). On the other hand, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyzes an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-protomylonite during deformation in subduction-related environment. The studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow slip structures. Our case-study represents, therefore, a fossil example of association of fault structures related with stick-slip strain accomodation during subduction of continental crust.


2021 ◽  
Author(s):  
Armel Menant ◽  
Onno Oncken ◽  
Johannes Glodny ◽  
Samuel Angiboust ◽  
Laurent Jolivet ◽  
...  

<p>Subduction margins are the loci of a wide range of deformation processes occurring at different timescales along the plate interface and in the overriding forearc crust. Whereas long-term deformation is usually considered as stable over Myr-long periods, this vision is challenged by an increasing number of observations suggesting a long-term pulsing evolution of active margins. To appraise this emerging view of a highly dynamic subduction system and identify the driving mechanisms, detailed studies on high pressure-low temperature (HP-LT) exhumed accretionary complexes are crucial as they open a window on the deformation history affecting the whole forearc region.</p><p>In this study, we combine structural and petrological observations, Raman spectroscopy on carbonaceous material, Rb/Sr multi-mineral geochronology and thermo-mechanical numerical models to unravel with an unprecedented resolution the tectono-metamorphic evolution of the Late-Cenozoic HP-LT nappe stack cropping out in western Crete (Hellenic subduction zone). A consistent decrease of peak temperatures and deformation ages toward the base of the nappe pile allows us to identify a minimum of three basal accretion episodes between ca. 24 Ma and ca. 15 Ma. On the basis of structural evidences and pressure-temperature-time-strain predictions from numerical modeling, we argue that each of these mass-flux events triggered a pulse in the strain rate, sometimes associated with a switch of the stress regime (i.e., compressional/extensional). Such accretion-controlled transient deformation episodes last at most ca. 1-2 Myr and may explain the poly-phased structural records of exhumed rocks without involving changes in far-field stress conditions. This long-term background tectonic signal controlled by deep accretionary processes plays a part in active deformations monitored at subduction margins, though it may remain blind to most of geodetic methods because of superimposed shorter-timescale transients, such as seismic-cycle-related events.</p>


2021 ◽  
Author(s):  
Cailey Condit ◽  
Victor Guevara ◽  
Melodie French ◽  
Adam Holt ◽  
Jonathan Delph

<p>Feedbacks amongst petrologic and mechanical processes along the subduction plate boundary play a central role influencing slip behaviors and deformation styles. Metamorphic reactions, resultant fluid production, deformation mechanisms, and strength are strongly temperature dependent, making the thermal structure of these zones a key control on slip behaviors.</p><p> </p><p>Firstly, we investigate the role of metamorphic devolatilization reactions in the production of Episodic Tremor and Slip (ETS) in warm subduction zones. Geophysical and geologic observations of ETS hosting subduction zones suggest the plate interface is fluid-rich and critically stressed, which together, suggests that this area is a zone of near lithostatic pore fluid pressure.  Fluids and high pore fluid pressures have been invoked in many models for ETS. However, whether these fluids are sourced from local dehydration reactions in particular lithologies, or via up-dip transport from greater depths remains an open question. We present thermodynamic models of the petrologic evolution of four lithologies typical of the plate interface along predicted pressure–temperature (P-T) paths for the plate boundary along Cascadia, Nankai, and Mexico which all exhibit ETS at depths between 25-65 km. Our models suggest that 1-2 wt% H<sub>2</sub>O is released at the depths of ETS along these subduction segments due to punctuated dehydration reactions within MORB, primarily through chlorite and/or lawsonite breakdown. These reactions produce sufficient in-situ fluid across this narrow P-T range to cause high pore fluid pressures. Punctuated dehydration of oceanic crust provides the dominant source of fluids at the base of the seismogenic zone in these warm subduction margins, and up-dip migration of fluids from deeper in the subduction zone is not required to produce ETS-facilitating high pore fluid pressures. These dehydration reactions not only produce metamorphic fluids at these depths, but also result in an increased strength of viscous deformation through the breakdown of weak hydrous phases (e.g., chlorite, glaucophane) and the growth of stronger minerals (e.g., garnet, omphacite, Ca-amphibole). Lastly, we present preliminary data on viscosity along warm subduction paths showing the locations of these dehydration pulses correlate with viscosity increases in mafic lithologies along the shallow forarc.</p>


2021 ◽  
Author(s):  
Rilla C. McKeegan ◽  
Victor E. Guevara ◽  
Adam F. Holt ◽  
Cailey B. Condit

<p>The dominant mechanisms that control the exhumation of subducted rocks and how these mechanisms evolve through time in a subduction zone remain unclear. Dynamic models of subduction zones suggest that their thermal structures evolve from subduction initiation to maturity. The series of metamorphic reactions that occur within the slab, resultant density, and buoyancy with respect to the mantle wedge will co-evolve with the thermal structure. We combine dynamic models of subduction zone thermal structure with phase equilibria modeling to place constraints on the dominant controls on the depth limits of exhumation. This is done across the temporal evolution of a subduction zone for various endmember lithologic associations observed in exhumed high-pressure terranes: sedimentary and serpentinite mélanges, and oceanic tectonic slices.</p><p>Initial modeling suggests that both serpentinite and sedimentary mélanges remain positively buoyant with respect to the mantle wedge throughout all stages of subduction (up to 65 Myr), and for the spectrum of naturally constrained ratios of mafic blocks to serpentinite/sedimentary matrix. In these settings, exhumation depth limits and the “point of no return” (c. 2.3 GPa) are not directly limited by buoyancy, but potentially rheological changes in the slab at the blueschist-eclogite transition stemming from: the switch from amphibole-dominated to pyroxene-dominated rheology and/or dehydration embrittlement. These mechanisms may increase the possibility of brittle failure and hence promote detachment of the slab top into the subduction channel. For the range of temperatures recorded by exhumed serpentinite mélanges, the locus of dehydration for altered MORB at the slab top coincides with the point of no return (2.3 GPa) between 35 and 40 Myr, suggesting a strong temporal dependence on deep exhumation in the subduction channel. </p><p>Tectonic slices composed of 50% mafic rocks and 50% serpentinized slab mantle show a temporal dependence on the depth limits of positive buoyancy. For the range of temperatures recorded by exhumed tectonic slices, the upper pressure limit of positive buoyancy is ~2 GPa, and is only crossed between ~30 and 40 Myr after subduction initiation. Some exhumed tectonic slices record much higher pressures (2.5 GPa); thus, other mechanisms or lithologic combinations may also play a significant role in determining the exhumation limits of tectonic slices. </p><p>Future work includes constraining how the loci of dehydration vary through time for different degrees of oceanic crust alteration, how exhumation limits and mechanisms may change with different subducting plate ages, and calculating how initial exhumation velocities may vary through time. Further comparison with the rock record will constrain the parameters that control the timing and limits of exhumation in subduction zones.</p>


2018 ◽  
Vol 115 (46) ◽  
pp. 11706-11711 ◽  
Author(s):  
Matthew J. Kohn ◽  
Adrian E. Castro ◽  
Buchanan C. Kerswell ◽  
César R. Ranero ◽  
Frank S. Spear

Some commonly referenced thermal-mechanical models of current subduction zones imply temperatures that are 100–500 °C colder at 30–80-km depth than pressure–temperature conditions determined thermobarometrically from exhumed metamorphic rocks. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting metamorphic reactions and associated fluid release, subarc melting conditions, rheologies, and fault-slip phenomena. Here, we compile surface heat flow data from subduction zones worldwide and show that values are higher than can be explained for a frictionless subduction interface often assumed for modeling. An additional heat source––likely shear heating––is required to explain these forearc heat flow values. A friction coefficient of at least 0.03 and possibly as high as 0.1 in some cases explains these data, and we recommend a provisional average value of 0.05 ± 0.015 for modeling. Even small coefficients of friction can contribute several hundred degrees of heating at depths of 30–80 km. Adding such shear stresses to thermal models quantitatively reproduces the pressure–temperature conditions recorded by exhumed metamorphic rocks. Comparatively higher temperatures generally drive rock dehydration and densification, so, at a given depth, hotter rocks are denser than colder rocks, and harder to exhume through buoyancy mechanisms. Consequently––conversely to previous proposals––exhumed metamorphic rocks might overrepresent old-cold subduction where rocks at the slab interface are wetter and more buoyant than in young-hot subduction zones.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 767-788 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode) interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T) conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa) during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD), and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow-slip structures. Our case study represents, therefore, a fossil example of association of fault structures related to stick-slip strain accommodation during subduction of continental crust.


2021 ◽  
Author(s):  
Kali Allison ◽  
Laurent Montesi ◽  
Eric Dunham

<p>The interaction between the seismogenic portion of faults and their ductile roots is central to understanding the mechanics of seismic cycles. It is well established that faults are highly localized within the cold and brittle upper crust, but less is known about fault and shear zone structure in the warmer, more ductile, lower crust and in the upper mantle. Increasing temperature with depth causes two transitions in behavior: a frictional transition from seismic to aseismic fault behavior and a transition from brittle to ductile off-fault deformation (BDT). To explore the effects of these two transitions on seismic cycle characteristics (e.g., recurrence interval, nucleation depth, and down-dip limit of coseismic rupture), we simulate seismic cycles on a 2D strike-slip fault. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes and to capture aseismic fault slip and off-fault viscous flow in the interseismic period. The fault is represented with rate-and-state friction. In the off-fault material, distributed viscous flow occurs through dislocation creep. We also consider two possible weakening mechanisms that may be active in lower crustal shear zones: shear heating and grain size reduction, which changes the ductile rheology from dislocation to diffusion creep. This model makes it possible to self-consistently simulate the variations of stress, strain rate, and grain size in the vicinity of a strike-slip fault.</p><p>We find that the viscous shear zone beneath the fault (defined as the region of elevated viscous strain rate) is roughly elliptically shaped, extending up to 10 km below the fault and with a width of 1 to 3 km. When weakening mechanisms are neglected, the BDT occurs below the depth of the transition from seismic to aseismic fault slip. In these cases, seismic cycle characteristics are similar to those of a traditional elastic cycle simulation that neglects viscoelastic deformation. However, the inclusion of shear heating, which produces a thermal anomaly relative to the background geotherm, shallows the BDT enough to limit the down-dip propagation of coseismic slip in some cases. In these cases, earthquakes penetrate 1-2 km into the shear zone, consistent with observations of zones in which both viscous flow and coseismic slip occur. Also, in these simulations, very little aseismic fault slip occurs. Instead, tectonic plate motion is accommodated primarily through coseismic slip and bulk viscous flow. Preliminary simulations that include the effects of grain size reduction within the shear zone show similar effects. Both weakening mechanisms narrow the shear zone by up to 20%, suggesting that the fault also plays a large role in controlling shear zone localization.</p>


2021 ◽  
Author(s):  
Dave May ◽  
Philip England

<p>Subduction zones can give rise to severe natural hazards, e.g. earthquakes, tsunami & volcanism. Improved hazard assessment may be realised through physics based modelling. The thermal structure of a subducting plate has a first order control on many aspects of the subduction zone, including: dehydration reactions; intermediate depth seismicity; melt production; formation of arc volcanoes. Subduction zones exhibit a wide variability with respect to slab age, velocity, dip, rheology and mechanical behaviour of the overriding plate. For many subduction zones the assumption of a thermo-mechanical steady-state is reasonable, hence forward models often assume the form of a kinematically driven slab causing traction-driven mantle wedge flow. Even for this simplified forward model, our understanding of how the parameters and their uncertainties influence the thermal structure is incomplete. </p><p>To address this uncertainty, here we use a data-driven model reduction technique, specifically the interpolated Proper Orthogonal Decomposition (iPOD), to define a fast-to-evaluate and surrogate model of a steady-state subduction zone that is valid over a high-dimensional parameter space. The accuracy of the iPOD surrogate model is controlled using a hyper-rectangle tree-based adaptive sampling strategy combined with a non-intrusive error estimator. To illustrate the applicability of the iPOD, we present examples in which reduced-order models are constructed for combinations of parameters related to the kinematics, rheology and geometry of the subduction zone. The examples will characterize the efficiency and accuracy of the iPOD reduced-order model when using parameter spaces that vary in dimension from 1 to 7.</p>


2021 ◽  
Author(s):  
Adam Beall ◽  
Fabio A. Capitanio ◽  
Ake Fagereng ◽  
Ylona van Dinther

<p>The largest and most devastating earthquakes on Earth occur along subduction zones. Here, long-term plate motions are accommodated in cycles of strain accumulation and release. Episodic strain release occurs by mechanisms ranging from rapid earthquakes to slow-slip and quasi-static creep along the plate interface. Slip styles can vary between and within subduction zones, though it is unclear what controls margin-scale variability. Current approaches to seismo-tectonics primarily relate the stress state and seismogenesis at subduction margins to interface material properties and plate kinematics, constrained by recorded seismic slip, GPS motions and integrated strain. At larger spatio-temporal scales, significant progress has been made towards the understanding of subduction dynamics and emerging self-consistent plate motions, tectonics and stress coupling at plate margins. The margin stress state is ultimately linked to the force balance arising from interactions between the slab, mantle flow and upper plate. These mantle and lithosphere dynamics are thus expected to govern the tectonic regimes under which seismicity occurs. It remains unclear how these longer- and shorter-term perspectives can be reconciled. We review the aspects of large-scale subduction dynamics that control tectonic loading at plate margins, discuss possible influences on the stress state of the plate interface, and summarise recent advances in integrating the earthquake cycle and large-scale dynamics. It is plausible that variations in large-scale subduction dynamics could systematically influence seismicity, though it remains unclear to what degree this interplay occurs directly through the plate interface stress state and/or indirectly, corresponding to variation of other subduction zone characteristics. While further constraints of the geodynamic controls on the nature of the plate interface and their incorporation into probabilistic earthquake models is required, their ongoing development holds promise for an improved understanding of the global variation of large earthquake occurrence and their associated risk.</p>


Sign in / Sign up

Export Citation Format

Share Document