CALC-SILICATE ALTERATION AND ORE CHARACTERIZATION, ASARCO MISSION COMPLEX, IMPLICATIONS ON THE OPTIMIZATION OF MO RECOVERY

2019 ◽  
Author(s):  
Sarah Elizabeth Baxter ◽  
Keyword(s):  
2015 ◽  
Vol 52 (1) ◽  
pp. 5-20
Author(s):  
F. Kolb ◽  
A. Pichler ◽  
H. Mali ◽  
J. Schenk

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 346
Author(s):  
Renata Hiraga ◽  
Otávio Gomes ◽  
Reiner Neumann

Maghemite (γ-Fe2O3) is a mineral formed from magnetite oxidation at low temperatures, an intermediate metastable term of the magnetite to hematite oxidation and could be mixed with both. It has magnetic susceptibility similar to magnetite, crystal structure close to magnetite with which it forms a solid solution, while compositionally it equals hematite. Maghemite is thus easily misidentified as magnetite by Χ-ray diffraction and/or as hematite by spot chemical analysis in iron ore characterization routines. Nonstoichiometric magnetite could be quantified in samples of Brazilian soils and iron ores by the Rietveld method using a constrained refinement of the Χ-ray patterns. The results were confirmed by reflected light microscopy and Raman spectroscopy, thus qualitatively validating the method. Χ-ray diffraction with the refinement of the isomorphic substitution of Fe2+ by Fe3+ along the magnetite-maghemite solid solution could help to suitably characterize maghemite in iron ores, allowing for the evaluation of its ultimate influence on mineral processing, as its effect on surface and breakage properties.


Author(s):  
Pratama Istiadi Guntoro ◽  
Yousef Ghorbani ◽  
Jan Rosenkranz

AbstractCurrent advances and developments in automated mineralogy have made it a crucial key technology in the field of process mineralogy, allowing better understanding and connection between mineralogy and the beneficiation process. The latest developments in X‑ray micro-computed tomography (µCT) have shown a great potential to let it become the next-generation automated mineralogy technique. µCT’s main benefit lies in its capability to allow 3D monitoring of the internal structure of the ore sample at resolutions down to a few hundred nanometers, thus excluding the common stereological error in conventional 2D analysis. Driven by the technological and computational progress, µCT is constantly developing as an analysis tool and successively it will become an essential technique in the field of process mineralogy. This study aims to assess the potential application of µCT systems, for 3D ore characterization through relevant case studies. The opportunities and platforms that µCT 3D ore characterization provides for process design and simulation in mineral processing are presented.


2020 ◽  
Author(s):  
Laura Tusa ◽  
Mahdi Khodadadzadeh ◽  
Margret Fuchs ◽  
Richard Gloaguen ◽  
Jens Gutzmer

<p>Mineral exploration campaigns represent an essential step in the discovery and evaluation of ore deposits required to fulfil the global demand for raw materials. Thousands of meters of drill-cores are extracted in order to characterize a specific exploration target. Hyperspectral imaging is recently being explored in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. The method relies on the fact that minerals have different spectral responses in specific portions of the electromagnetic spectrum. Sensors covering the visible to near-infrared (VNIR) and short-wave infrared (SWIR) are commonly used to identify and estimate the relative abundance of minerals such as phyllosilicates, amphiboles, carbonates, iron oxides and hydroxides as well as sulphates (Clark, 1999). The distribution of these mineral phases can frequently be used as a proxy for the distribution of ore minerals such as sulphides. Typical core imaging systems can acquire hyperspectral data from a whole drill-core tray in a matter of seconds. Available sensors record data in several hundreds of contiguous spectral bands at spatial resolutions around 1 mm/pixel.</p><p>​​In this work, we apply a local high-resolution mineralogical analysis, such as SEM-MLA (Kern et al., 2018), for a precise and exhaustive mineral mapping of some selected small samples. We then upscale these mineralogical data acquired from thin sections to drill-core scale by integrating hyperspectral imaging and machine learning techniques. Our proposed method is composed of two main steps. In the first step, after initially co-registering the hyperspectral and high-resolution mineralogical data and making a training set, a machine learning model is trained. In the second step, we apply the learned model to obtain mineral abundance and association maps over entire drill-cores.</p><p>​​The mapping is further used for the calculation of other mineralogical parameters essential to exploration and further mining stages such as modal mineralogy, mineral association, alteration indices, metal grade estimates and hardness. The proposed methodological framework is illustrated on samples collected from a porphyry type deposit, but the procedure is easily adaptable to other ore types. Therefore, this approach can be integrated in the standard core-logging routine, complementing the on-site geologists and can serve as background for the geometallurgical analysis of numerous ore types.  </p><p>​​</p><p>​​Clark, R. N., 1999, “Spectroscopy of rocks and minerals, and principles of spectroscopy,” in Remote sensing for the earth sciences: Manual of remote sensing, vol. 3, John Wiley & Sons, Inc, pp. 3–58.</p><p>​​Gandhi, S. M. and Sarkar, B. C., 2016, “Drilling,” in Essentials of Mineral Exploration and Evaluation, pp. 199–234.</p><p>​​Kern, M., Möckel, R., Krause, J., Teichmann, J., Gutzmer, J., 2018. Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner. Eng. 116, 213–225.</p>


2018 ◽  
Vol 3 ◽  
pp. 2-22
Author(s):  
Ney Pinheiro Sampaio ◽  
Fernando Gabriel Araújo ◽  
Fernando Leopoldo Von Kruger

2017 ◽  
Vol 81 (3) ◽  
pp. 463-475
Author(s):  
J. Menez ◽  
N. F. Botelho

AbstractGold occurrences have been reported in the northeastern part of Goiás State since the beginning of the 18th Century. The main mineralization is associated with Paleoproterozoic peraluminous, syntectonic granites of the Aurumina Suite and associated metasedimentary,graphite-bearing country rocks of the Ticunzal Formation. In the Buraco do Ouro gold mine, the mineralization is hosted in muscovite-quartz mylonite in a silicified shear zone near the contact between biotite-muscovite granite and paragneiss of the Ticunzal Formation. The ore mineralogy consistsof gold, paraguanajuatite (Bi2Se3), kalungaite (PdAsSe), isomertieite [Pd11Sb2As2], mertieite II [Pd8(Sb,As)3], sperrylite (PtAs2), padmaite (PdBiSe), bohdanowiczite (AgBiSe2), clausthalite (PbSe),krutaite (CuSe2), ferroselite (FeSe2), uraninite (UO2) and unnamed Ag-Pb-Bi-Se minerals. Local magnetite concentrations and rare chalcopyrite and pyrite are also associated with both mineralized and barren mylonites in a gangue consisting of muscovite, quartzand rare tourmaline. High TiO2 muscovite clasts in the ore are interpreted as the magmatic muscovite of the original granite, and the mineralization is considered to be synchronous with the syntectonic granite intrusion during syn-emplacement shearing and alteration. The associationbetween granitic rocks and platinum-group element (PGE)-bearing gold mineralization observed in the Buraco do Ouro mine is uncommon and unique in the context of the Aurumina Suite and the Ticunzal Formation, where gold deposits and occurrences are gold-only. The chemical data suggest the possibilityof a solid solution between paraguanajuatite and bohdanowiczite. In addition, a complex intergrowth occurs between paraguanajuatite, clausthalite and Ag-Pb-Bi-Se phases, one of which, a Pb-Bi-Se phase could represent a new mineral. Uraninite is identified for the first time in this mineralassemblage and its concentration in the ore seems important, as revealed by high gamma spectrometric measurements in the samples collected in the mine. The association between gold and uranium constitutes a regional signature, observed in both gold and uranium deposits in the Cavalcante region.


Clay Minerals ◽  
1984 ◽  
Vol 19 (5) ◽  
pp. 843-856 ◽  
Author(s):  
F. A. Adedeji ◽  
F. R. Sale

AbstractTwo iron ore samples from Nigeria have been examined using TG, DTA, EGA, XRD, and optical and electron microscopy. Itakpe iron ore is hematite-rich, this mineral being intergrown with magnetite, and silica is the major impurity. Agbaja ore is an acidic oölite ore consisting of goethite and magnetite, with alumina, silica and phosphorus as major impurities. Itakpe is typical of a rich ore formed by magmatic segregation whilst Agbaja is a lean ore of sedimentary origin. Isothermal mass-change measurements in hydrogen and carbon monoxide in the range 800–1100°C show Agbaja to be less reducible than Itakpe; in particular, Agbaja is very irreducible at 1100°C because of sintering of the ore. Characterization and reducibility experiments were also carried out on Corby (Northamptonshire, UK) iron ore for comparison.


Sign in / Sign up

Export Citation Format

Share Document