Persistence of Grenvillian dominance in Laurentian detrital zircon age systematics explained by sedimentary recycling: Evidence from detrital zircon double dating and detrital monazite textures and geochronology

Geology ◽  
2020 ◽  
Vol 48 (8) ◽  
pp. 792-797
Author(s):  
S.C. Zotto ◽  
D.P. Moecher ◽  
N.A. Niemi ◽  
J.R. Thigpen ◽  
S.D. Samson

Abstract Grenvillian ages dominate Neoproterozoic to Paleozoic detrital zircon (DZ) populations across eastern Laurentia and persist through the present. The persistence of this dominance is inferred to result from recycling of DZ grains ultimately sourced from exceptionally Zr-rich and zircon-fertile Grenvillian granitoids. Pennsylvanian arenites of the Appalachian Basin (eastern United States) exhibit DZ U-Pb age distributions that are nearly identical to those of Neoproterozoic to Cambrian strata, and contain detrital diagenetic monazite grains formed via metamorphism or diagenesis of sedimentary rocks in the source region. Detrital zircon (U-Th)/He ages are mostly 475–300 Ma, yielding lag times [Δt = U-Pb age − (U-Th)/He age] of 500–1000 m.y. and 1200–2400 m.y. for Grenvillian and Paleoproterozoic to Archean DZ grains, respectively. Detrital monazite Th-Pb ages are comparable to (U-Th)/He cooling ages, reflecting formation of monazite during Paleozoic regional metamorphism of Neoproterozoic to Cambrian strata that reset the (U-Th)/He systematics of Grenvillian DZ grains within those metasediments. These results are either consistent with or prove recycling. Incorporation of other geological constraints permits definition of at least three (and potentially five) recycling events and their timing following initial post-Grenvillian exhumation and erosion (the “great Grenvillian sedimentation episode”). Recycling events include dispersal of post-Grenvillian sediment during deposition of Neoproterozoic to Cambrian strata (formation of the “Great Unconformity”: cycle 1), subsequent erosion of metamorphosed Neoproterozoic to Cambrian strata generating detritus for the Pennsylvanian arenites sampled here (cycle 2), and modern erosion of those arenites (cycle 3). Pancontinental river systems facilitated dispersal of sediment of ultimate Grenvillian age during or after each cycle.

2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 637-640 ◽  
Author(s):  
G. Gutiérrez-Alonso ◽  
J. Fernández-Suárez ◽  
Alan S. Collins ◽  
I. Abad ◽  
F. Nieto

Abstract The 40Ar/39Ar age data on single detrital muscovite grains complement U-Pb zircon ages in provenance studies, as micas are mostly derived from proximal sources and record low-temperature processes. Ediacaran and Cambrian sedimentary rocks from northwest Iberia contain unmetamorphosed detrital micas whose 40Ar/39Ar age spectra suggest an Amazonian–Middle American provenance. The Ediacaran sample contained only Neoproterozoic micas (590–783 Ma), whereas the Cambrian sample contained three age groups: Neoproterozoic (550–640 Ma, Avalonian–Cadomian–Pan African), Mesoproterozoic- Neoproterozoic boundary (ca. 920–1060 Ma, Grenvillian-Sunsas), and late Paleoproterozoic (ca. 1580–1780 Ma, Rio Negro). Comparison of 40Ar/39Ar muscovite ages with published detrital zircon age data from the same formations supports the hypothesis that the Neoproterozoic basins of northwest Iberia were located in a peri-Amazonian realm, where the sedimentary input was dominated by local periarc sources. Tectonic slivering and strike-slip transport along the northern Gondwanan margin affected both the basins and fragments of basement that were transferred from Amazonian to northern African realms during the latest Neoproterozoic–earliest Cambrian. Exhumation and erosion of these basement sources caused shedding of detritus to the Cambrian basins, in addition to detritus sourced in the continental mainland. The apparent dominance of Rio Negro–aged micas in the Cambrian sandstone suggests the presence of unexposed basement of that age beneath the core of the Ibero-Armorican Arc.


Geology ◽  
2020 ◽  
Author(s):  
Yvette D. Kuiper ◽  
Christopher Hepburn

Newly compiled U-Pb detrital zircon data from eight geographic domains along the eastern Laurentian margin from Newfoundland (Canada) to Alabama (United States) show a highly consistent signature along strike, with only minor local variations. The Precambrian signature is characterized by a small ca. 2.7 Ga population and a major ca. 1.9–0.9 Ga population that peaks at ca. 1.2–1.0 Ga. Detrital zircon populations are from Laurentian Archean crust (ca. 2.7 Ga population), Paleoproterozoic orogens (ca. 1.9–1.6 Ga), the Granite-Rhyolite Province (ca. 1.5–1.4 Ga), and the Elzevir terrane and Grenville Province (ca. 1.3–0.9 Ga). The Mesoproterozoic populations vary in size depending on proximity to the ca. 1.5–1.4 Ga Granite-Rhyolite Province, the ca. 1245–1225 Ma Elzevir terrane, and the ca. 1.2–0.9 Ga Grenville Province. A middle Ordovician zircon population varies in size along strike depending on input from the Taconic orogenic belt, but it is strongest in the northern Appalachians. Because of the general along-strike consistency in detrital zircon age populations, the compilation of all 7534 concordant U-Pb detrital zircon data can be used in future U-Pb detrital zircon studies as an indicator for eastern Laurentian margin sources.


2009 ◽  
Vol 45 (2) ◽  
pp. 131-146 ◽  
Author(s):  
E. R. Phillips ◽  
R. A. Smith ◽  
P. Stone ◽  
V. Pashley ◽  
M. Horstwood

SynopsisDetrital zircon populations within the Llandovery to Wenlock sandstones of the southern Midland Valley of Scotland indicate that the recycled orogenic provenance for these sedimentary rocks was essentially bimodal, comprising a younger Lower Palaeozoic component and an older predominantly Mesoproterozoic component. The Lower Palaeozoic contribution is dominated by Arenig/Llanvirn (c. 475 Ma) zircons interpreted as having been derived from a volcanic-plutonic source located within the Midland Valley terrane. The dominant Mesoproterozoic component within the sandstones is c. 1000 Ma and is thought to represent detritus shed from a Grenvillian (c. 1000–1800Ma) basement to the Midland Valley terrane. The scarcity of Archaean zircons precludes the Grampian metamorphic terrane Dalradian Supergroup as a supplier of sediment to the Ordovician–Silurian basins located along the southern margin of the Midland Valley. The age profiles of detrital zircon populations do not fit with a simple model of unroofing of a volcanic-arc complex. Rather they point to the periodic uplift of fault-bound, dismembered blocks of volcanic and plutonic rocks during a prolonged (Llandovery through to at least early Devonian) period of sinistral strike-slip deformation, and it was this which controlled basin development, sedimentary facies distribution and deformation along the southern side of the Midland Valley terrane.Appendices 1 & 2 can be found at http://www.geolsoc.org.uk/SUP18370


Geosphere ◽  
2021 ◽  
Author(s):  
Isaac J. Allred ◽  
Michael D. Blum

Carboniferous sediment dispersal from the Appalachian orogenic system (eastern United States) has become a topic of widespread interest. However, the actual pathways for continental-scale, east-to-west sediment transfer have not been documented. This study presents detrital zircon (DZ) U-Pb ages and Hf isotopic values from the Lower Pennsylvanian (Morrowan) Jackfork Group and Johns Valley Shale of the synorogenic Ouachita deepwater basin of Arkansas to document provenance and delineate the likely sediment-routing systems within the broader context of sediment dispersal across Laurentia. Twelve (12) DZ U-Pb age distributions are interpreted to indicate that sediments were derived from the Appalachians to the east and northeast, as well as the midcontinent region to the north. All samples display prominent ca. 500– 400 Ma, 1250–950 Ma, 1550–1300 Ma, and 1800–1600 Ma grains, consistent with ultimate derivation from the Appalachian, Grenville, Midcontinent, and Yavapai-Mazatzal provinces. DZ Hf values obtained from the Ouachita Basin are similar to published Hf values from Pennsylvanian samples in the Appalachian and Illinois Basins. Age distributions are generally consistent for seven samples collected from the Jackfork Group and Johns Valley Shale in the southern Ouachita Mountains through ~2400 m of stratigraphic section and are interpreted to indicate little change in provenance during the Morrowan in this part of the system. However, samples from the most northern and most source-proximal site in Little Rock, Arkansas, exhibit modest percentages of Appalachian ages and elevated contributions of Yavapai-Mazatzal ages when compared with samples collected farther to the south and west. We interpret differences between DZ signatures to indicate distinct sediment-routing pathways to the Ouachita Basin. We infer the strong Appalachian and Grenville signals to represent an axial system flowing through the Appalachian foredeep, whereas the more diverse signals represent a confluence of rivers from the northeast through the backbulge of southern Illinois and western Kentucky and from the north across the Arkoma shelf. Collectively, the Ouachita Basin represents a terminal sink for sediments derived from much of the eastern and central United States.


2007 ◽  
Vol 8 (1) ◽  
pp. 63 ◽  
Author(s):  
Michael A. Sandstrom ◽  
David Changnon ◽  
Brian R. Flood

Corn earworm (Helicoverpa zea) (CEW) generally are not able to overwinter annually in the Upper Midwest, thus they must migrate northward to affect the primary vegetable-growing locations in this area. Migration of CEW is highly dependent on the weather. Provided a source region in the southern United States, migration of CEW from south to north appeared to occur when a high-pressure system was located in the eastern United States and a low-pressure system and attendant frontal boundary was observed to the east of the Rocky Mountains and/or northern plains states. Southerly wind flow located west of the high and east of the low forms an “insect pump.” Convection cells allowed CEW to lift and advance from their source region northward in the low-level insect pump. When CEW encountered an area of downward motion during their northward flight, such as a frontal boundary or a light precipitation area, they had a tendency to “drop out” of the sky into fields below, an area referred to as the “Drop Zone.” Favorable weather patterns for CEW migration and subsequent infestation of fields in north-central Illinois were confirmed by high CEW trap counts at Rochelle over the last four decades. Accepted for publication 5 September 2006. Published 19 July 2007.


Geosphere ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1422-1453
Author(s):  
Snir Attia ◽  
Scott R. Paterson ◽  
Jason Saleeby ◽  
Wenrong Cao

Abstract A compilation of new and published detrital zircon U-Pb age data from Permo-Triassic to Cretaceous intra-arc strata of the Sierra Nevada (eastern California, USA) reveals consistent sedimentary provenance and depositional trends across the entire Sierra Nevada arc. Detrital zircon age distributions of Sierra Nevada intra-arc strata are dominated by Mesozoic age peaks corresponding to coeval or just preceding arc activity. Many samples display a spread of pre-300 Ma ages that is indistinguishable from the detrital age distributions of pre-Mesozoic prebatholithic framework strata and southwestern Laurentian continental margin deposits. Synthesis of detrital zircon age data with tectonostratigraphic constraints indicates that a marine to subaerial arc was established in Triassic time, giving way to widespread shallow- to deep-marine deposition in latest Triassic to Early Jurassic time that continued until the emergence of the arc surface in the Early Cretaceous. No data presented herein require the existence of Mesozoic exotic terranes and/or outboard arcs that were previously hypothesized to have been accreted to the Sierra Nevada. We conclude that Sierra Nevada intra-arc strata formed within a coherent depositional network that was intimately linked to the southwestern United States Cordilleran margin throughout the span of Mesozoic arc activity.


2021 ◽  
Author(s):  
Gisela Gartmair ◽  
Milo Barham ◽  
Christopher L. Kirkland

Abstract Southern Australia’s Cenozoic Eucla basin contains world-class strandline heavy mineral deposits. This study links detrital zircon U-Pb geochronology and heavy mineral compositions from four mineral sand prospects, and a suite of published deposits, to bounding Archean to Neoproterozoic crustal areas. A variable number of distinct sediment sources is recorded from each prospect’s detrital zircon age spectrum. This variability in zircon ages, quantified using a Shannon-Weaver test, serves as a metric of source region heterogeneity. Greater zircon age heterogeneity correlates with heavy mineral enrichment. Enhanced heavy mineral yields reflect retention of resistate over labile minerals—a function of greater sediment transport, reworking, and upgrading processes that parallel those that result in detrital zircon age polymodality. In this case study, greater reworking in intermediate storage sites and transport by longshore processes, eastward along the ~1,000 km spanned by the study sites, corresponds to the direction of progressive heavy mineral enrichment identified in zircon ages and mineral compositions. This approach is a proxy for the duration minerals have spent in the sedimentary system and provides an important perspective for understanding heavy mineral sands.


Sign in / Sign up

Export Citation Format

Share Document