scholarly journals Nailed to the craton: Stratigraphic continuity across the southeastern Canadian Cordillera with tectonic implications for ribbon continent models

Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 101-105
Author(s):  
M.E. McMechan ◽  
K.G. Root ◽  
P.S. Simony ◽  
D.R.M. Pattison

Abstract Cambrian and Upper Devonian to Mississippian strata can be confidently traced westward, without strike-slip offset, from the autochthonous section above North American basement into the southeastern Canadian Cordillera, and are thus “nailed” to the craton. These strata are in turn stratigraphically pinned to older (Mesoproterozoic Belt-Purcell Supergroup, Neoproterozoic Windermere Supergroup, and Ediacaran), intermediate-aged (Ordovician–Silurian), and younger (Permian to Middle Jurassic) strata found only in the mountains, thus linking them to the adjacent autochthonous craton. The overlapping distribution of linking successions, regionally traceable unique stratigraphic horizons in the Belt-Purcell and Windermere Supergroups, and across-strike stratigraphic features show that the entire Cariboo, northern Selkirk, Purcell, and Rocky Mountains are directly tied to the adjacent North American craton without discernible strike-slip or oblique displacement, or substantial purely convergent plate-scale (>400 km) horizontal displacement. They link the entire width of the Belt-Purcell and Windermere basins in the southeastern Canadian Cordillera to the adjacent craton and show that any proposed Cretaceous ribbon continent suture, with its thousands of kilometers of proposed displacement, cannot run through the southeastern Canadian Cordillera.

1979 ◽  
Vol 16 (3) ◽  
pp. 770-791 ◽  
Author(s):  
J. W. H. Monger ◽  
R. A. Price

The present geodynamic pattern of the Canadian Cordillera, the main features of which were probably established in Miocene time, involves a combination of right-hand strike-slip movements on transform faults along the continental margin, and, in the south and extreme north, convergence in subduction zones in which oceanic lithosphere moves beneath the continent, with consequent magmatism along the continental margin. In the southern Canadian Cordillera, geophysical surveys have outlined the subducting slab and the asthenospheric bulge that occurs beneath and behind the magmatic arc. They also show that there is now no root of thickened Precambrian continental crust beneath the tectonically shortened supracrustal strata in the southern parts of the Omineca Crystalline Belt and Rocky Mountain Belt.The Rocky Mountain, Omineca Crystalline, Intermontane, Coast Plutonic, and Insular Belts, the structural and physiographic provinces that dominate the present configuration of the Canadian Cordillera, were established with the initial uplift and the intrusion of granitic rocks in the Omineca Crystalline Belt in Middle and Late Jurassic time and in the Coast Plutonic Complex in Early Cretaceous time, and they dominated patterns of uplift, erosion and deposition through Cretaceous and Paleogene time. Their development may be due to compression with thrust faulting in the eastern Cordillera, and to magmatism that accompanied subduction and to accretion of an exotic terrane, Wrangellia, in the western Cordillera. Major right-lateral strike-slip faulting, which occurred well east of but sub-parallel with the continental margin during Late Cretaceous and Paleogene time, accompanied major tectonic shortening due to thrusting and folding in the Rocky Mountain Belt as well as the main subduction-related (?) magmatism in the Coast Plutonic Complex.The configuration of the western Cordillera prior to late Middle Jurassic time is enigmatic. Late Paleozoic and early Mesozoic volcanogenic strata form a complex collage of volcanic arcs and subduction complexes that was assembled mainly in the Mesozoic. The change in locus of deposition between Upper Triassic and Lower to Middle Jurassic volcanogenic assemblages, and the thrust faulting in the northern Cordillera may record emplacement of another exotic terrane, the Stikine block, in latest Triassic to Middle Jurassic time.The earliest stage in the evolution of the Cordilleran fold belt involved the protracted (1500 to 380 Ma) development of a northeasterly tapering sedimentary wedge that discordantly overlaps Precambrian structures of the cratonic basement. This miogeoclinal wedge may be a continental margin terrace wedge that was prograded into an ocean basin, but it has features that may be more indicative of progradation into a marginal basin in which there was intermittent volcanic activity, than into a stable expanding ocean basin of the Atlantic type.


1990 ◽  
Vol 64 (3) ◽  
pp. 352-362 ◽  
Author(s):  
George D. Stanley ◽  
Louise Beauvais

New colonial corals from near Pittsburg Landing, Idaho, are clearly dated as Middle Jurassic (Bajocian) in age. They consist of Coenastraea hyatti (Wells) and Thecomeandra vallieri n. sp., and occur abundantly with molluscan fossils in thin, biostromal limestone beds in the Coon Hollow Formation. These fossils are the youngest shelly faunas yet known from the Wallowa terrane. The similarity of the coral and bivalve fauna to endemic faunas of the Western Interior suggests that during Middle Jurassic time, the Wallowa terrane was close enough to the North American craton for faunal exchange with the Western Interior Embayment. The Pittsburg Landing corals appear dissimilar from Middle Jurassic corals known from other terranes of the western Cordillera.


1999 ◽  
Vol 36 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Martin de Keijzer ◽  
Paul F Williams ◽  
Richard L Brown

The Teslin zone in south-central Yukon has previously been described as a discrete zone with a steep foliation unique to the zone. It includes the Anvil assemblage and the narrowest portion of the Yukon-Tanana terrane (the Nisutlin assemblage), and is defined by post-accretionary faults: the Big Salmon fault to the west and the d'Abbadie fault system to the east. The zone was interpreted as a lithospheric suture or a crustal-scale transpression zone, and as the root zone of klippen lying on the North American craton to the east. We demonstrate that deformation and metamorphism are the same inside and outside the zone. The steep transposition foliation in the zone, in contrast to adjacent rocks to the east, coincides with the steep limb of a regional F3 structure. This fold has a shallow limb in the easternmost part of the zone and immediately east of the zone. Thus we reject earlier interpretations. If a suture exists between the obducted Anvil and Yukon-Tanana Nisutlin assemblages and North America, it is a shear zone that occurs at the base of the obducted rocks, which has been folded by the F3 fold. However, evidence that this thrust boundary is a lithospheric suture is lacking. A consequence of our interpretation is that North American rocks pass under the eastern Teslin zone and outcrop to the west of the Nisutlin and Anvil assemblages. This geometry precludes the possibility of the Teslin zone being the root zone of the klippen.


1982 ◽  
Vol 19 (3) ◽  
pp. 476-489 ◽  
Author(s):  
M. E. McMechan ◽  
R. A. Price

Middle Proterozoic (~1500–1350 Ma) Belt–Purcell strata exposed in the Purcell and southwestern Rocky Mountains were affected by at least three distinct episodes of deformation and regional metamorphism. The oldest episode (1300–1350 Ma) apparently terminated Belt–Purcell sedimentation and involved folding, regional metamorphism, and granitic intrusion. The second episode (800–900 Ma) occurred during deposition of the Windermere Supergroup and involved uplift, block faulting, and low-grade regional metamorphism. Mesozoic–Cenozoic metamorphism, deformation, and plutonism overprinted the results of the earlier deformation and metamorphism.Illite crystallinity and muscovite polymorph ratios indicate that Purcell strata in the Mount Fisher area are in the lower green-schist to prehnite–pumpellyite facies of regional metamorphism. In the Steeples and Fisher blocks this metamorphism is related to structures that formed during the Late Cretaceous – Paleocene deformation. However, in the Sand Creek block the regional metamorphism is related to the development of a spaced cleavage that is folded by a Late Cretaceous – Paleocene nappe. Regional considerations suggest that this cleavage formed during the 1300–1350 Ma episode of deformation and metamorphism.The "East Kootenay orogeny" as currently defined embraces the two older episodes of tectonism. It is proposed that the term East Kootenay orogeny be restricted to designate the 1300–1350 Ma episode and that the term "Goat River orogeny" designate the 800–900 Ma episode of tectonism. The East Kootenay and Goat River orogenies appear to be correlative with the Racklan and Hayhook orogenies recognized in the northern Canadian Cordillera.


1995 ◽  
Vol 32 (10) ◽  
pp. 1803-1824 ◽  
Author(s):  
Frederick A. Cook

Analyses of Lithoprobe and other data from southwestern Canada provide new insights on how this portion of the Cordillera formed during plate convergence along the western margin of North America. Crustal rocks are detached from their mantle lithosphere, which must have been consumed during subduction. Detachment occurred at or near the base of the crust beneath the Intermontane and (or) Omineca belts, probably along the tips of tectonic wedges while the rocks were still outboard of the relatively cool, mechanically rigid, North American craton. During the Late Cretaceous and early Tertiary, rotation of detached rocks caught between the North American craton and the oceanic plates accounts for some apparently conflicting results between paleomagnetic data that indicate large northward translation of rocks in the western Cordillera, and regional geological features that appear to preclude comparable amounts of translation of rocks in the eastern Cordillera during the same time interval. Transpression associated with rotation in the Foreland and Omineca belts ceased by the early Tertiary because detached allochthonous rocks of the crust became mechanically attached to, and thus physically part of, North America. Continued plate convergence led to regional transtensional shearing and associated crustal extension in the southern Canadian Cordillera, and perhaps as far inboard as northern Montana, where coeval magmatism was probably associated with new, or reactivation of ancient, lithosphere-penetrating fracture systems.


1988 ◽  
Vol 25 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Richard L. Brown ◽  
Larry S. Lane

The Selkirk Allochthon, a composite tectonic slice composed of North American paleocontinental-margin deposits and more distal, possibly marginal-basin "suspect terrane," was displaced eastward toward the craton in the Late Jurassic and Late Cretaceous.The Carnes Nappe, a major west-verging recumbent anticline within the Selkirk Allochthon, is considered the southern continuation of Scrip Nappe, which in the Monashee Mountains has an inverted limb length of 50 km. The west-verging nappe and associated structures are interpreted as having originated in the Early to Middle Jurassic during accretion of western allochthonous terranes and prior to eastward displacement of the Selkirk Allochthon.The reversal from westward vergence away from the North American craton to eastward vergence is considered as marking a fundamental change in the evolution of the orogenic belt and may reflect a transition from underthrusting of western allochthonous terranes on blind-shear zones to east-directed breakthrough thrusts.


1989 ◽  
Vol 26 (4) ◽  
pp. 821-828 ◽  
Author(s):  
D. T. A. Symons ◽  
M. R. Wellings

The lower Middle Eocene (49.4 ± 2.4 Ma) Kamloops Group is exposed in the middle of the Quesnellia subterrane of Terrane I. The group consists of the siliciclastic Tranquille Beds and the overlying Dewdrop Flats plateau basalts and andesites. Detailed alternating field (AF) and thermal step demagnetization was carried out on 282 specimens from 26 flow sites and one conglomerate site, and saturation isothermal remanent magnetization (SIRM) tests were performed to examine the remanence carriers. The petrology of the gently dipping flows, the presence of antiparallel normal and reverse remanence, the conglomerate test, and the fold test all indicate that a primary remanence has been isolated. It resides in both magnetite and hematite over a broad range of AF coercivities, blocking temperatures, and domain sizes. Its mean direction of 355.0°, 73.4 °(α95 = 6.9°) gives a pole position of 138.4°W, 81.4°N (dp = 11.0°, dm = 12.3°) that is statistically indistinguishable from the 50 Ma reference pole for the North American craton. This indicates that the cratonization of Terrane I was complete by the Middle Eocene after it had undergone ~1300 km of northward translation and ~45 °of clockwise rotation since the mid-Cretaceous.


1993 ◽  
Vol 30 (4) ◽  
pp. 776-786
Author(s):  
G. Murthy ◽  
R. Pätzold

The Pridolian Clam Bank Formation around Lourdes Cove on the Port au Port Peninsula, western Newfoundland, underwent deformation during the Acadian orogeny. As a result, some of the beds were overturned, but the stratification planes can be accurately determined everywhere. Paleomagnetic studies of the Clam Bank Formation have yielded three well-defined components of magnetization, all acquired subsequent to the deformation event: component A with D = 337.3°, I = −28.3°, (N = 16 sites, k = 25.3, α95 = 7.5°), with a corresponding paleopole at 23.2°N, 145.0°E (dp, dm = 4.5°, 8.2°); component B with D = 172.9°, I = 5.7° (N = 35 specimens, k = 10.2, α95 = 6.4°), with a corresponding paleopole at 38.2°N, 130.1°E (dp, dm = 3.2°, 6.4°); component C with D = 350.4°, I = 69.8° (N = 33 specimens, k = 8.9, α95 = 8.9°). A pre-Mesozoic origin of the A and B components is indicated by the presence of normal and reversed components in specific sites; by the lack of correspondence between the A and B paleopoles and the Mesozoic and later pole positions from the Appalachians and the North American craton; and by agreement with Paleozoic poles from the region. The A component was probably acquired immediately after deformation during the Acadian orogeny. The B component is probably a chemical remanence that was acquired during Permo-Carboniferous (Kiaman) time. The C component is of recent origin, probably acquired in the present Earth's field. Paleomagnetic data from western Newfoundland are used in a localized setting to construct a paleopole sequence and to estimate paleolatitudes for western Newfoundland during the Paleozoic. Keeping in mind the paucity of data for Siluro-Devonian age from this region, western Newfoundland seems to have been at its southernmost position at the end of the Ordovician and to have occupied equatorial latitudes during the Permo-Carboniferous. The paleolatitude trend suggests that this block, which is part of the North American craton, moved in a southerly direction during the early Paleozoic and in a northerly direction during the middle and late Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document