scholarly journals Apatite nanoparticles in 3.46–2.46 Ga iron formations: Evidence for phosphorus-rich hydrothermal plumes on early Earth

Geology ◽  
2021 ◽  
Author(s):  
Birger Rasmussen ◽  
Janet R. Muhling ◽  
Alexandra Suvorova ◽  
Woodward W. Fischer

Phosphorus is an essential nutrient that is thought to have regulated primary productivity in global oceans after the advent of oxygenic photosynthesis. The prime source of seawater phosphorus is regarded to be continental weathering of phosphate minerals. Ancient seawater phosphorus concentrations have been constrained using the phosphorus content of iron-rich chemical sediments—banded iron formations (BIFs); however, the removal processes and depositional phases remain unclear. Here we report that nanometer-sized apatite crystals (<500 nm) are ubiquitous in 3.46–2.46 Ga BIFs and cherts from the Kaapvaal (South Africa) and Yilgarn and Pilbara (Western Australia) cratons. The apatite is uniformly dispersed in a chemical sediment comprising greenalite nanoparticles, which were encased in very early diagenetic silica cement that limited compaction and chemical reactions. The lack of organic carbon (below detection; <0.3 wt%) and absence of primary iron oxides implies that the phosphorus was not derived from the degradation of organic matter or seawater scavenging by oxide particles. Instead, the occurrence of apatite in sediments derived from hydrothermally sourced Fe2+ and SiO2(aq) suggests that phosphorus too was derived from vent plumes. Today, seawater P is rapidly removed from vent fluids due to scavenging by oxidized Fe2+. However, prior to the Great Oxidation Event (2.45–2.32 Ga), dissolved phosphorus released during anoxic alteration of seafloor basalts escaped the iron-oxidation trap. Our results point to the existence of a submarine hydrothermal flux of dissolved phosphorus that supplied nutrients to the early anoxic oceans. High amounts of seawater P may help to explain why phosphorus is ubiquitous in cell biology—it was not limiting during the origin and early evolution of life.

2019 ◽  
Vol 5 (11) ◽  
pp. eaav2869 ◽  
Author(s):  
Katharine J. Thompson ◽  
Paul A. Kenward ◽  
Kohen W. Bauer ◽  
Tyler Warchola ◽  
Tina Gauger ◽  
...  

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis—photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth’s climate under a dim early Sun.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kaidian Zhang ◽  
Zhi Zhou ◽  
Jiashun Li ◽  
Jingtian Wang ◽  
Liying Yu ◽  
...  

AbstractPhosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.


2016 ◽  
Vol 7 (6) ◽  
pp. 927-936 ◽  
Author(s):  
Mahima Singh ◽  
Jayant Singhal ◽  
K. Arun Prasad ◽  
V.J. Rajesh ◽  
Dwijesh Ray ◽  
...  

Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 480 ◽  
Author(s):  
Jeremiah Shuster ◽  
Maria Rea ◽  
Barbara Etschmann ◽  
Joël Brugger ◽  
Frank Reith

Terraced iron formations (TIFs) are laminated structures that cover square meter-size areas on the surface of weathered bench faces and tailings piles at the Mount Morgan mine, which is a non-operational open pit mine located in Queensland, Australia. Sampled TIFs were analyzed using molecular and microanalytical techniques to assess the bacterial communities that likely contributed to the development of these structures. The bacterial community from the TIFs was more diverse compared to the tailings on which the TIFs had formed. The detection of both chemolithotrophic iron-oxidizing bacteria, i.e., Acidithiobacillus ferrooxidans and Mariprofundus ferrooxydans, and iron-reducing bacteria, i.e., Acidobacterium capsulatum, suggests that iron oxidation/reduction are continuous processes occurring within the TIFs. Acidophilic, iron-oxidizing bacteria were enriched from the TIFs. High-resolution electron microscopy was used to characterize iron biomineralization, i.e., the association of cells with iron oxyhydroxide mineral precipitates, which served as an analog for identifying the structural microfossils of individual cells as well as biofilms within iron oxyhydroxide laminations—i.e., alternating layers containing schwertmannite (Fe16O16(OH)12(SO4)2) and goethite (FeO(OH)). Kinetic modeling estimated that it would take between 0.25–2.28 years to form approximately one gram of schwertmannite as a lamination over a one-m2 surface, thereby contributing to TIF development. This length of time could correspond with seasonable rainfall or greater than average annual rainfall. In either case, the presence of water is critical for sustaining microbial activity, and subsequently iron oxyhydroxide mineral precipitation. The TIFs from the Mount Morgan mine also contain laminations of gypsum (CaSO·2H2O) alternating with iron oxyhydroxide laminations. These gypsum laminations likely represented drier periods of the year, in which millimeter-size gypsum crystals presumably precipitated as water gradually evaporated. Interestingly, gypsum acted as a substrate for the attachment of cells and the growth of biofilms that eventually became mineralized within schwertmannite and goethite. The dissolution and reprecipitation of gypsum suggest that microenvironments with circumneutral pH conditions could exist within TIFs, thereby supporting iron oxidation under circumneutral pH conditions. In conclusion, this study highlights the relationship between microbes for the development of TIFs and also provides interpretations of biogeochemical processes contributing to the preservation of bacterial cells and entire biofilms under acidic conditions.


PalZ ◽  
2021 ◽  
Author(s):  
Carolin L. Dreher ◽  
Manuel Schad ◽  
Leslie J. Robbins ◽  
Kurt O. Konhauser ◽  
Andreas Kappler ◽  
...  

AbstractBanded Iron Formations (BIFs) are marine chemical sediments consisting of alternating iron (Fe)-rich and silica (Si)-rich bands which were deposited throughout much of the Precambrian era. BIFs represent important proxies for the geochemical composition of Precambrian seawater and provide evidence for early microbial life. Iron present in BIFs was likely precipitated in the form of Fe3+ (Fe(III)) minerals, such as ferrihydrite (Fe(OH)3), either through the metabolic activity of anoxygenic photoautotrophic Fe2+ (Fe(II))-oxidizing bacteria (photoferrotrophs), by microaerophilic bacteria, or by the oxidation of dissolved Fe(II) by O2 produced by early cyanobacteria. However, in addition to oxidized Fe-bearing minerals such as hematite (FeIII2O3), (partially) reduced minerals such as magnetite (FeIIFeIII2O4) and siderite (FeIICO3) are found in BIFs as well. The presence of reduced Fe in BIFs has been suggested to reflect the reduction of primary Fe(III) minerals by dissimilatory Fe(III)-reducing bacteria, or by metamorphic (high pressure and temperature) reactions occurring in presence of buried organic matter. Here, we present the current understanding of the role of Fe-metabolizing bacteria in the deposition of BIFs, as well as competing hypotheses that favor an abiotic model for BIF deposition. We also discuss the potential abiotic and microbial reduction of Fe(III) in BIFs after deposition. Further, we review the availability of essential nutrients (e.g. P and Ni) and their implications on early Earth biogeochemistry. Overall, the combined results of various ancient seawater analogue experiments aimed at assessing microbial iron cycling pathways, coupled with the analysis of the BIF rock record, point towards a strong biotic influence during BIF genesis.


Sign in / Sign up

Export Citation Format

Share Document