Evolution of Perturbations of a Free Surface From a Pulsating Underwater Source in a Fluid of Finite Depth

2021 ◽  
Vol 56 (6) ◽  
pp. 780-785
Author(s):  
A. T. Il’ichev ◽  
A. S. Savin
Keyword(s):  
1994 ◽  
Vol 261 ◽  
pp. 65-74 ◽  
Author(s):  
Jon Wright ◽  
Dennis B. Creamer

We extend the results of a previous paper to fluids of finite depth. We consider the Hamiltonian theory of waves on the free surface of an incompressible fluid, and derive the canonical transformation that eliminates the leading order of nonlinearity for finite depth. As in the previous paper we propose using the Lie transformation method since it seems to include a nearly correct implementation of short waves interacting with long waves. We show how to use the Eikonal method for slowly varying currents and/or depths in combination with the nonlinear transformation. We note that nonlinear effects are more important in water of finite depth. We note that a nonlinear action conservation law can be derived.


2015 ◽  
Vol 57 (2) ◽  
pp. 189-203 ◽  
Author(s):  
S. SAHA ◽  
S. N. BORA

We consider a two-layer fluid of finite depth with a free surface and, in particular, the surface tension at the free surface and the interface. The usual assumptions of a linearized theory are considered. The objective of this work is to analyse the effect of surface tension on trapped modes, when a horizontal circular cylinder is submerged in either of the layers of a two-layer fluid. By setting up boundary value problems for both of the layers, we find the frequencies for which trapped waves exist. Then, we numerically analyse the effect of variation of surface tension parameters on the trapped modes, and conclude that realistic changes in surface tension do not have a significant effect on the frequencies of these.


1970 ◽  
Vol 67 (2) ◽  
pp. 423-442 ◽  
Author(s):  
P. F. Rhodes-Robinson

AbstractThis paper is a first investigation into the short-wave asymptotic motion due to a cylinder heaving on water of finite constant depth, and we present a non-rigorous method for an arbitrary smooth cylinder which intersects the free surface normally. The reduction of the potential problem by the use of two auxifiary potentials, introduced by the subtraction of formal solutions constructed from the limit potential, enables us to find (i) an integral expression, by using a subsidiary approximate Green's function, for the potential in the far field which is evaluated after making plausible assumptions about the asymptotic value of the first auxiliary potential on the cylinder and below the free surface; and (ii) a form for the virtual mass, using the second auxiliary potential whose value on the cylinder is deduced from that of the first to which it is related. Thus we obtain the asymptotic evaluation of the coefficients describing the wave-making and virtual mass of the heaving cylinder, which depend on the limit potential and have no formal dependence on the depth of the bottom.


1994 ◽  
Vol 268 ◽  
pp. 89-101 ◽  
Author(s):  
A. C. King ◽  
D. J. Needham

The flow field induced by a vertical plate accelerating into a stationary fluid of finite depth with a free surface and a gravitational restoring force is investigated. This is a model problem for some technologically important design issues such as the bow splash of a ship moving at forward speed. Experimentally it is found that a thin jet forms on the plate and rises rapidly upwards. We investigate this jet in the small-time approximation and find an analytical solution for the flow field in which the jet emerges out of a thin region where the horizontal momentum of the main flow is converted by inertial effects into a rising jet.


1950 ◽  
Vol 46 (3) ◽  
pp. 453-468 ◽  
Author(s):  
A. Coombs

1. Many investigations have been made to determine the wave resistance acting on a body moving horizontally and uniformly in a heavy, perfect fluid. Lamb obtained a first approximation for the wave resistance on a long circular cylinder, and this was later confirmed to be quite sufficient over a large range. In 1926 and 1928, Havelock (4, 5) obtained a second approximation for the wave resistance and a first approximation for the vertical force or lift. Later, in 1936(6), he gave a complete analytical solution to this problem, in which the forces were expressed in the form of infinite series in powers of the ratio of the radius of the cylinder to the depth of the centre below the free surface of the fluid. General expressions for the wave resistance and lift of a cylinder of arbitrary cross-section were found by Kotchin (7) using integral equations, and the special case of a flat plate was evaluated. He continued with a discussion of the motion of a three-dimensional body. More recently, Haskind (3) has examined the same problem when the stream has a finite depth.


Author(s):  
Lawrence K. Forbes ◽  
Graeme C. Hocking ◽  
Graeme A. Chandler

AbstractWithdrawal flow through a point sink on the bottom of a fluid of finite depth is considered. The fluid is at rest at infinity, and a stagnation point is present at the free surface, directly above the point sink. Numerical solutions are computed by means of the method of fundamental solutions, and it is observed that flows of this type are apparently possible for Froude number less than about 1.5. Relationships to previous work are discussed.


2020 ◽  
Vol 61 ◽  
pp. C75-C88
Author(s):  
Shaymaa Mukhlif Shraida ◽  
Graeme Hocking

We consider the outflow of water from the peak of a triangular ridge into a channel of finite depth. Solutions are computed for different flow rates and bottom angles. A numerical method is used to compute the flow from the source for small values of flow rate and it is found that there is a maximum flow rate beyond which steady solutions do not seem to exist. Limiting flows are computed for each geometrical configuration. One application of this work is as a model of saline water being returned to the ocean after desalination. References Craya, A. ''Theoretical research on the flow of nonhomogeneous fluids''. La Houille Blanche, (1):22–55, 1949. doi:10.1051/lhb/1949017 Dun, C. R. and Hocking, G. C. ''Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary''. J. Eng. Math. 29:1–10, 1995. doi:10.1007/bf00046379 Hocking, G. ''Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom''. ANZIAM J. 26:470–486, 1985. doi:10.1017/s0334270000004665 Hocking, G. C. and Forbes, L. K. ''Subcritical free-surface flow caused by a line source in a fluid of finite depth''. J. Eng. Math. 26:455-466, 1992. doi:10.1007/bf00042763 Hocking, G. C. ''Supercritical withdrawal from a two-layer fluid through a line sink", J. Fluid Mech. 297:37–47, 1995. doi:10.1017/s0022112095002990 Hocking, G. C., Nguyen, H. H. N., Forbes, L. K. and Stokes,T. E. ''The effect of surface tension on free surface flow induced by a point sink''. ANZIAM J., 57:417–428, 2016. doi:10.1017/S1446181116000018 Landrini, M. and Tyvand, P. A. ''Generation of water waves and bores by impulsive bottom flux'', J. Eng. Math. 39(1–4):131-170, 2001. doi:10.1023/A:1004857624937 Lustri, C. J., McCue, S. W. and Chapman, S. J. ''Exponential asymptotics of free surface flow due to a line source''. IMA J. Appl. Math., 78(4):697–713, 2013. doi:10.1093/imamat/hxt016 Stokes, T. E., Hocking, G. C. and Forbes, L.K. ''Unsteady free surface flow induced by a line sink in a fluid of finite depth'', Comp. Fluids, 37(3):236–249, 2008. doi:10.1016/j.compfluid.2007.06.002 Tuck, E. O. and Vanden-Broeck, J.-M. ''A cusp-like free-surface flow due to a submerged source or sink''. ANZIAM J. 25:443–450, 1984. doi:10.1017/s0334270000004197 Vanden-Broeck, J.-M., Schwartz, L. W. and Tuck, E. O. ''Divergent low-Froude-number series expansion of nonlinear free-surface flow problems". Proc. Roy. Soc. A., 361(1705):207–224, 1978. doi:10.1098/rspa.1978.0099 Vanden-Broeck, J.-M. and Keller, J. B. ''Free surface flow due to a sink'', J. Fluid Mech, 175:109–117, 1987. doi:10.1017/s0022112087000314 Yih, C.-S. Stratified flows. Academic Press, New York, 1980. doi:10.1016/B978-0-12-771050-1.X5001-3


Sign in / Sign up

Export Citation Format

Share Document