Peculiarities of Thermophysical Processes of “Wet Compression” in Power Units with Highly Atomized Water Injection and Their Influence on Power Units Operation

2019 ◽  
Vol 57 (4) ◽  
pp. 547-554
Author(s):  
V. B. Alekseev ◽  
V. I. Zalkind ◽  
P. P. Ivanov ◽  
V. L. Nizovsky ◽  
S. S. Schigel
2018 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
E. H. Betelmal ◽  
S. A. Farhat

A thermodynamic model of the wet compressor in a simple gas turbine cycle was investigated in this paper. A suitable quantity of water was injected into the compressor-stages where it evaporated. Subsequently, the steam and air were heated in the combustion chamber and expanded in the turbine. The wet compressor (WC) has become a reliable way to reduce gas emissions and increase gas turbine efficiency. In this study, the operational data of the simple gas turbine and the maximum amount of water that can be injected into the compressor were assessed, as well as a comparison between the dry compression, the wet compression and the isentropic compression. The performance variation due to water spray in the compressor and the effect of varying ambient temperature on the performance of gas turbine (thermal efficiency, power) was investigated, and the results are compared to the results of the same cycle with a dry compressor. The analytical formula of exergy destruction and results show that exergy destruction increases with water injection. The programming of the performance model for the gas turbine was developed utilizing the software IPSEpro. The results of the gas turbine with a wet compressor demonstrates a 12% reduction in the compressor exit temperature up to isentropic temperature. The compressor work decreased by 11% when using a wet compressor, this lead to an improvement in power output and efficiency However, the wet compressor increases the specific fuel consumption and heat rate of the gas turbine. There are limitations in the amount of steam that can be injected, 0.4 kg/s of water was the optimum amount injected into the compressor.


Author(s):  
Ahmed Abdelwahab

Industrial centrifugal compressors generally comprise a number of low pressure ratio intercooled stages. This is done primarily for the purpose of reducing the compressor power requirements and improving the operating range of the multi-stage compressor. In recent years, however, rapid increases in the per-kilowatt-hour prices both domestically and worldwide has led to renewed research efforts to further reduce the power requirements of this type of compression equipment. Several attempts have been made to use direct water injection as a means to overspray the compressor inlet to further reduce its power requirement. This paper presents an investigation into the use of this technology in industrial centrifugal compressors. A simple numerical method is presented for the computation of wet compression processes. The method is based on both droplet evaporation and compressor mean-line calculations. An assessment, based on the developed model, of the effectiveness of evaporative processes in reducing the compressor power consumption per stage is presented. The impacts on stage efficiency and operating range are also presented.


Author(s):  
J. P. Schnitzler ◽  
I. von Deschwanden ◽  
S. Clauss ◽  
F. K. Benra ◽  
H. J. Dohmen ◽  
...  

Injecting water in the air upstream of an axial compressor intake is an effective method to increase the efficiency and the power output of a gas turbine application especially at hot days. Reasoned by their complex two phase flow axial compressors which operate in wet compression mode are in the focus of present thermodynamic analysis, numerical investigations and experimental research. Recently the evaporation process of water droplets, especially at high temperature and pressure levels has been investigated with the laser based measurement technique Phase Doppler Particle Analyzer (PDPA) in detail in a stationary test rig at the University of Duisburg-Essen. The focus of these investigations has been laid on the analysis of the evaporation process in a free stream or cross flow behavior without droplet wall interaction. In this paper the first results of the novel four stage axial compressor test rig are published. This test rig is arranged for high amount of water injection with special optical access for laser based measurements. The first part of the paper outlines the general design, geometric facts and aerodynamic reference parameters of the test rig and gives an introduction to the installed conventional measurement technique. Discrete measurement results from dry runs are compared with CFD results to validate the gathered experimental data. In the second part of the paper the previously discussed dry runs are compared with measurement results of runs with water injection. The amount of water to air ratio is varied and the effects on the operating behavior of the four stage axial compressor are pointed out in detail. Furthermore results from the laser based PDPA measurements at the inlet and at the outlet of the compressor outline the impact on the water droplets moving through the compressor in wet compression mode.


Author(s):  
Hai Zhang ◽  
Xiaojiang Tian ◽  
Xiaojun Pan ◽  
Jie Zhou ◽  
Qun Zheng

In process of wet compression, gas turbine engine will ingest a certain amount of water, which can influence the overall performance of the engine. This phenomenon is particularly significant in the cleaning process of industrial gas turbine and water injection of aero-engine. When the quantity of water ingestion is quite large, the performance of gas turbine will appear deterioration and may lead to flameout, power reduce or even shutdown of the engine, causing accidents. Water droplets will be accumulated on the blade surface where water films could be formed on pressure surface in the wet compression process. The effects of water film on gas turbine engines are aerodynamic, thermodynamic and mechanical. The above-mentioned effects occur simultaneously and be affected by each other. Considering the above effects and the fact that they are time dependent, there are few gas turbine performance researches, which take into account the water film phenomenon. This study is a new research of investigating theoretically the water film effects on a gas turbine performance. It focuses on the aerodynamic and thermodynamic effects of the phenomenon on the compressor stage. The computation of water film thickness, which frequently be formed on the surface of compressor blade, its movement and extra torque demand, are provided by a simulation model of the code. Considering the change in blade’s profile and the thickness feature of the water film, the compressor stage’s performance deterioration is analyzed. In addition to this, movement and the formation of the water film on a compressor stage are simulated and analyzed by using unsteady numerical methods under different water injecting conditions in this paper. The movement characteristics of water droplets in compressor passage are investigated to understand the flow mechanisms responsible for water film formation process. The forming and the tearing process of water film on blade surface are analyzed at different injection conditions. For simulating the real situation, The maximum quantity of injected water can reach 12%. The results indicate that continuity and region of the water film on the blade surface will be developed with the increment of droplet size and injection rate. It is also found that the flow losses near blade surface increases with the tearing process of water film due to the increment of surface roughness.


Author(s):  
Enrico Munari ◽  
Gianluca D’Elia ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina

Wet compression is a strategy adopted to increase the power output of gas turbines, with respect to dry conditions, usually also incrementing the operating range of the compressor. However, stall and surge are two aerodynamic instabilities which depend on many factors, and they are expected to occur even in wet compression at low flow rates. Despite the many studies carried out in the last 80 years, literature does not offer many works concerning these instability phenomena in wet compression. In this paper, an experimental analysis of stall and surge in wet compression conditions is carried out on an axial-centrifugal compressor installed in an existing test rig at the Engineering Department of the University of Ferrara. Some modifications of the test rig were necessary. The intake duct was implemented with a water injection system which, by means of water spray injectors, allows the uniform mixing of air and water before the compressor inlet. The control and data acquisition system of the test bench was updated with new hardware and software to obtain faster data sampling. Transient and steady-state tests were carried out to make a comparison with the experimental results in dry conditions. The analysis was carried out using traditional thermodynamic sensors, by means of both classic post-processing techniques, and cyclostationary analysis. The aim is to i) evaluate the influence of wet compression on the stable performance of the compressor ii) qualitatively identify the characteristics of stall and surge in wet compression by means of sensors which were shown to capture these phenomena well and iii) demonstrate the reliability of cyclostationary analysis in wet compression conditions for stall and surge analysis.


Author(s):  
Tjark Eisfeld ◽  
Franz Joos

Wet compression operation is a commercially attractive way to increase power output and efficiency of a gas turbine cycle. In recent literature the impact of water loading on the aerodynamic performance of the blading has not been entirely clarified yet. The most significant issues of aerodynamics in wet compression are stage rematching and stability. Therefore, these subjects are investigated in a linear compressor rotor cascade. This setup allows an estimation of the aerodynamic performance of the blading from two-dimensional test data at various operating conditions. Moreover, the impact of droplet flow on the two-dimensional flow field of the blade passage is measured in detail in order to understand the deviation of performance parameters. The results indicate that the effect of water injection on compressor aerodynamics is strongly related to the operating condition. It appears that droplet loading has a beneficial effect on the flow at high blade loading.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 906 ◽  
Author(s):  
Jianting Sun ◽  
Xin Zhou ◽  
Qi Liang ◽  
Zhitao Zuo ◽  
Haisheng Chen

There is an urgent demand to reduce compression power consumption in Compressed Air Energy Storage (CAES) systems. Wet compression has been widely used in gas turbines to reduce compressor power consumption and improve thermal efficiency, but this technology has not been applied yet in the CAES field. In this paper, a centrifugal compressor for CAES was numerically studied to investigate the effect of wet compression on compressor and droplet motion. The results showed that wet compression makes the performance curve shift to a high-pressure ratio/efficiency. Meanwhile, wet compression lowers the stall margin and narrows the stable operation range, and the effect is enhanced with the increase of water injection ratio or the decrease of average droplet diameter. Wet compression can effectively save compressor power consumption during energy storage, and at the designed pressure ratio, the power consumption can be reduced by 1.47% with a water injection ratio of 3% and an average droplet diameter of 5 μm. Influenced by the inertia and secondary flow, the droplets migrate to the impeller pressure and shroud side, thus causing brake loss by impacting on blades. The migration of droplets strengthens with the increase in the average droplet diameter and flow coefficient.


Author(s):  
Mingcong Luo ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Qingfeng Deng ◽  
Jiyou Chen ◽  
...  

The rotor blade tip leakage flow and associated formation of the tip leakage vortex and interaction of the tip leakage vortex with the shockwave, particularly in the case of a transonic compressor rotor have significant impact on the compressor performance and its stability. Air injection upstream of the compressor rotor tip has been shown to improve compressor performance and enhance its stability. The air required for rotor blade tip injection is generally taken from the later stages of the compressor thus causing penalty on the gas turbine performance. In this study, effects of water injection at the rotor tip with and without the wet compression on the compressor performance and its stability have been examined. To achieve the stated objectives, the well tested transonic compressor rotor stage, NASA rotor stage 37, has been numerically simulated. The evaluation of results on various performance parameters such as total pressure ratio, inlet flow capacity and adiabatic efficiency combined with contours of total pressure losses, entropy, Mach No., and temperature including limiting streamlines, shows that the blade tip water injection could help in reducing low energy region downstream of the shockwave and strength of the tip leakage vortex with the compressor operating at its rotating stall boundary condition. The extent of reduction depends on the droplet size, injection flow rate and its velocity. Furthermore, results show that combined case of the blade tip water injection and the wet compression could provide better stall margin enhancement than the blade tip water injection case.


Sign in / Sign up

Export Citation Format

Share Document