Evaluation of Glucose Absorption Level in the Small Intestine of Different Rat Strains under Natural Conditions

2018 ◽  
Vol 54 (4) ◽  
pp. 308-315 ◽  
Author(s):  
A. A. Gruzdkov ◽  
Yu. V. Dmitrieva ◽  
A. S. Alekseeva ◽  
A. S. Polozov ◽  
L. V. Gromova
2020 ◽  
Author(s):  
Hitomi Kumagai ◽  
Shigenobu Ina ◽  
Aya Hamada ◽  
Chiaki Sugimoto ◽  
Yusuke Yamaguchi,

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2474
Author(s):  
Lyudmila V. Gromova ◽  
Serguei O. Fetissov ◽  
Andrey A. Gruzdkov

The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.


1986 ◽  
Vol 87 (6) ◽  
pp. 649-654
Author(s):  
Masahiko TSUCHIYA ◽  
Shuji INOUE ◽  
Masayuki SATTA ◽  
Hideki YOSHIMURA ◽  
Masataka ARITA ◽  
...  

1921 ◽  
Vol 34 (3) ◽  
pp. 259-270 ◽  
Author(s):  
H. W. Graybill

In observations on the development of the ova of Heterakis papillosa in cultures, it was found that they failed to develop at a temperature ranging from 2.5–8°C., but developed slowly at a temperature of 11.5–13.5°C. The minimum temperature for development seems to lie between 8° and 11.5–13.5°C. At temperatures ranging in various cultures from 18–29°C. ova developed to their final stage in 7 to 12 days. Undeveloped ova subjected to a freezing temperature for a period of 4 days were viable at the end of that time. Fully developed ones remained alive when exposed out of doors for a period of 7 days at a temperature ranging from 5–62°F. Undeveloped ova survived desiccation at room temperature for a period of 16 days, but not for 41 days. Fully developed eggs were alive after desiccation for 18 days, but not after 49 days. In another instance they were no longer viable after 10 days. Embryos within ova kept in physiological salt solution at room temperature survived during a period of a little over 12 months. Fully developed ova kept in soil outdoors under circumstances approaching natural conditions contained living embryos after a period of 8 months. From a study of a series of artificially infested chickens killed at short intervals it appears that the ova of Heterakis hatch in the small intestine and the larvæ pass by way of the small and large intestines to the ceca where they undergo development to maturity. Larvæ found in the mucosa of the ceca were not in an encysted condition. Feeding of numerous artificially incubated ova may lead to a light infestation, the cause of which has not been definitely determined. A period of 57 days was required for larvæ to reach maturity in a host. The entire cycle from egg to adult requires a minimum time of about 64 days. A brief study of the growth and development of larvæ within the host has been made. No evidence was found of a migration through the tissues. A few penetrate into the mucosa of the ceca.


1992 ◽  
Vol 70 (9) ◽  
pp. 1201-1207 ◽  
Author(s):  
D. J. Philpott ◽  
J. D. Butzner ◽  
J. B. Meddings

The small intestine is capable of adapting nutrient transport in response to numerous stimuli. This review examines several possible mechanisms involved in intestinal adaptation. In some cases, the enhancement of transport is nonspecific, that is, the absorption of many nutrients is affected. Usually, increased transport capacity in these instances can be attributed to an increase in intestinal surface area. Alternatively, some conditions induce specific regulation at the level of the enterocyte that affects the transport of a particular nutrient. Since the absorption of glucose from the intestine is so well characterized, it serves as a useful model for this type of intestinal adaptation. Four potential sites for the specific regulation of glucose transport have been described, and each is implicated in different situations. First, mechanisms at the brush-border membrane of the enterocyte are believed to be involved in the upregulation of glucose transport that occurs in streptozotocin-induced diabetes mellitus and alterations in dietary carbohydrate levels. Also, factors that increase the sodium gradient across the enterocyte may increase the rate of glucose transport. It has been suggested that an increase in activity of the basolaterally located Na+–K+ ATPase could be responsible for this phenomena. The rapid increase in glucose uptake seen in hyperglycemia seems to be mediated by an increase in both the number and activity of glucose carriers located at the basolateral membrane. More recently, it was demonstrated that mechanisms at the basolateral membrane also play a role in the chronic increase in glucose transport observed when dietary carbohydrate levels are increased. Finally, alterations in tight-junction permeability enhance glucose absorption from the small intestine. The possible signals that prompt these adaptive responses in the small intestine include glucose itself and humoral as well as enteric nervous interactions.Key words: intestinal transport, glucose transport, intestinal adaptation.


1985 ◽  
Vol 54 (2) ◽  
pp. 449-458 ◽  
Author(s):  
A. N. Janes ◽  
T. E. C. Weekes ◽  
D. G. Armstrong

1. Sheep fitted with re-entrant canulas in the proximal duodenum and terminal ileum were used to determine the amount of α-glucoside entering, and apparently disappearing from, the small intestine when either dried-grass or ground maize-based diets were fed. The fate of any α-glucoside entering the small intestine was studied by comparing the net disappearance of such a-glucoside from the small intestine with the absorption of glucose into the mesenteric venous blood.2. Glucose absorption from the small intestine was measured in sheep equipped with catheters in the mesenteric vein and carotid artery. A continuous infusion of [6-3H]glucose was used to determine glucose utilization by the mesenteric-drained viscera and the whole-body glucose turnover rate (GTR).3. The amounts of α-glucoside entering the small intestine when the dried-grass and maize-based diets were given were 13.9 (SE 1.5) and 95.4 (SE 16.2) g/24 h respectively; apparent digestibilities of such α-glucoside in the small intestine were 60 and 90% respectively.4. The net absorption of glucose into the mesenteric venous blood was —2.03 (SE 1.20) and 19.28 (SE 0.75) mmol/h for the dried-grass and maize-based diets respectively. Similarly, total glucose absorption amounted to 1.52 (SE 1.35) and 23.33 (SE 1.86) mmol/h (equivalent to 7 and 101 g/24 h respectively). These values represented 83 and 11 1% of the a-glucoside apparently disappearing from the small intestine, determined using the re-entrant cannulated sheep.5. Total glucose absorption represented 8 and 61% of the whole-body GTR for the dried-grass and maize-based diets respectively. Endogenous glucose production was significantly lower when the sheep were fed on the maize-based diet compared with the dried-grass diet.6. The mesenteric-drained viscera metabolized a small amount of glucose, equivalent to 234 and 17% of the total glucose absorbed for the dried-grass and maize-based diets respectively.7. It is concluded that a large proportion of the starch entering the small intestine of sheep given a maize-based diet is digested and absorbed as glucose, and thus contributes to the whole-body GTR.


Digestion ◽  
1972 ◽  
Vol 7 (3-4) ◽  
pp. 139-146 ◽  
Author(s):  
R. Bloch ◽  
H. Menge ◽  
G.A. Martini ◽  
E.O. Riecken

2003 ◽  
Vol 43 (5) ◽  
pp. 409-418 ◽  
Author(s):  
Gaëlle Boudry ◽  
Jean-Paul Lallès ◽  
Charles Henri Malbert ◽  
Marie Louise Grondahl ◽  
Martin Andreas Unmack ◽  
...  

2012 ◽  
Vol 35 (8) ◽  
pp. 1264-1268 ◽  
Author(s):  
Miyuki Shirosaki ◽  
Yoko Goto ◽  
Saori Hirooka ◽  
Hideki Masuda ◽  
Tomoyuki Koyama ◽  
...  

2003 ◽  
Vol 4 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Isabel M. Martínez ◽  
Inmaculada Morales ◽  
Guadalupe García-Pino ◽  
José E. Campillo ◽  
María A. Tormo

Diabetes in humans and in experimental animals produces changes in the function and structure of the small intestine. The authors determined the activity of intestinal disaccharidases (maltase and sucrase) and of 6-phosphofructo-1-kinase (PFK-1) in enterocytes isolated from the small intestine of male Wistar rats (2.5 to 3 months old) with experimental nonobese type 2 diabetes, induced by streptozotocin (STZ) injection on the day of birth (n0-STZ) or on the 5th day of life (n5-STZ), with different degrees of hyperglycemia and insulinemia (n0-STZ and n5-STZ models). The glycemia (mmol/L) of the diabetic rats (n0-STZ: 8.77 ± 0.47; n5-STZ: 20.83 ± 0.63) was higher (P< .01) than that of the nondiabetic (ND) rats (5.99 ± 0.63); on the contrary, the insulinemia (ng/mL) was significantly lower in both n0-STZ (1.74 ± 0.53;P< .05) and n5-STZ (1.12 ± 0.44;P< .01) diabetic rats than in normal rats (3.77 ± 0.22). The sucrase and maltase activities (U/g protein) in diabetic rats (n0-STZ: 89 ± 9 and 266 ± 12; n5-STZ: 142 ± 23 and 451 ± 57) were significantly higher than those in the ND group (66 ± 5 and 228 ± 22). The PFK-1 activities (mU/mg protein) in the diabetic models (n0-STZ: 14.89 ± 1.51; n5-STZ: 13.35 ± 3.12) were significantly lower (P< .05) than in ND rats (20.54 ± 2.83). The data demonstrated enzymatic alterations in enterocytes isolated fromthe small intestine of n0-STZ rats that are greater (P< .05) than in the more hyperglycemic and hypoinsulinemic n5-STZ animals. The results also show that nonobese type 2–like diabetes in the rat produces modifications that favor an increase in glucose absorption rates.


Sign in / Sign up

Export Citation Format

Share Document