Descending Interneurons in the Supraesophageal Ganglion of the Madagascar Cockroach Gromphadorhina portentosa

2019 ◽  
Vol 55 (5) ◽  
pp. 429-432
Author(s):  
I. Yu. Severina ◽  
A. N. Knyazev
Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Megha Kanabar ◽  
Samuel Bauer ◽  
Zimuzo M. Ezedum ◽  
Ian P. Dwyer ◽  
William S. Moore ◽  
...  

1986 ◽  
Vol 158 (6) ◽  
pp. 775-794 ◽  
Author(s):  
C. H. F. Rowell ◽  
H. Reichert

2009 ◽  
Vol 102 (2) ◽  
pp. 875-885 ◽  
Author(s):  
Haleh Fotowat ◽  
Amir Fayyazuddin ◽  
Hugo J. Bellen ◽  
Fabrizio Gabbiani

Drosophila melanogaster exhibits a robust escape response to objects approaching on a collision course. Although a pair of large command interneurons called the giant fibers (GFs) have been postulated to trigger such behaviors, their role has not been directly demonstrated. Here, we show that escape from visual stimuli like those generated by approaching predators does not rely on the activation of the GFs and consists of a more complex and less stereotyped motor sequence than that evoked by the GFs. Instead, the timing of escape is tightly correlated with the activity of previously undescribed descending interneurons that signal a threshold angular size of the approaching object. The activity pattern of these interneurons shares features with those of visual escape circuits of several species, including pigeons, frogs, and locusts, and may therefore have evolved under similar constraints. These results show that visually evoked escapes in Drosophila can rely on at least two descending neuronal pathways: the GFs and the novel pathway we characterize electrophysiologically. These pathways exhibit very different patterns of sensory activity and are associated with two distinct motor programs.


2001 ◽  
Vol 204 (13) ◽  
pp. 2265-2275 ◽  
Author(s):  
Michael Gebhardt ◽  
Hans-Willi Honegger

SUMMARY We investigated five different descending brain interneurons with dendritic arborizations in the deutocerebrum in the crickets Gryllus bimaculatus and G. campestris. These interneurones convey specific antennal mechanosensory information to the ventral nerve cord and all responded to forced antennal movements. These interneurones coded for velocity and showed preferences for distinct sectors of the total range of antennal movements. Their axons descended into the posterior connective either ipsilateral or contalateral to the cell body. Electrical stimulation of sensory nerves indicated that the interneurons received input from different afferents of the two antennal base segments. One interneuron had a particularly large axon with a conduction velocity of 4.4ms−1. This was the only one of the five interneurons that also received visual input. Its activity was reduced during voluntary antennal movements. The reduction in activity occurred even after de-efferentation of the antenna, indicating that it had a central origin. Although we do not have experimental evidence for behavioural roles for the descending antennal mechanosensory interneurons, the properties described here suggest an involvement in the perception of objects in the path of the cricket.


Author(s):  
Juan Guzman ◽  
Atena Sadat Sombolestani ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Ilse Cleenwerck ◽  
...  

A novel bacterium designated G55GPT and pertaining to the family Acetobacteraceae was isolated from the gut of the Madagascar hissing cockroach Gromphadorhina portentosa. The Gram-negative cells were rod-shaped and non-motile. The complete 16S rRNA sequence of the strain G55GPT showed the highest pairwise similarity to Gluconacetobacter johannae CFN-Cf-55T (95.35 %), suggesting it represents a potential new genus of the family Acetobacteraceae . Phylogenetic analysis based on 16S rRNA gene and 106 orthologous housekeeping protein sequences revealed that G55GPT forms a monophyletic clade with the genus Commensalibacter , which thus far has also been isolated exclusively from insects. The G55GPT genome size was 2.70 Mbp, and the G+C content was 45.4 mol%, which is lower than most acetic acid bacteria (51–68 mol%) but comparable to Swingsia samuiensis AH83T (45.1 mol%) and higher than Commensalibacter intestini A911T (36.8 mol%). Overall genome relatedness indices based on gene and protein sequences strongly supported the assignment of G55GPT to a new genus within the family Acetobacteraceae . The percentage of conserved proteins, which is a useful metric for genus differentiation, was below 54 % when comparing G55GPT to type strains of acetic acid bacteria, thus strongly supporting our hypothesis that G55GPT is a member of a yet-undescribed genus. The fatty acid composition of G55GPT differed from that of closely related acetic acid bacteria, particularly given the presence of C19 : 1  ω9c/ω11c and the absence of C14 : 0 and C14 : 0 2-OH fatty acids. Strain G55GPT also differed in terms of metabolic features such as its ability to produce acid from d-mannitol, and its inability to produce acetic acid from ethanol or to oxidize glycerol to dihydroxyacetone. Based on the results of combined genomic, phenotypic and phylogenetic characterizations, isolate G55GPT (=LMG 31394T=DSM 111244T) is considered to represent a new species in a new genus, for which we propose the name Entomobacter blattae gen. nov., sp. nov.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-122
Author(s):  
Janaína Ribeiro Oliveira ◽  
Junio Cota ◽  
Bruna Mara Carvalho ◽  
Theles de Oliveira Costa ◽  
Diego Vicente da Costa ◽  
...  

Background: Malnutrition and accessible high-quality protein food sources are two of the world’s alimentary challenges. Edible insects are nowadays recognized as a possible functional food solution with lower environmental impacts and beneficial health effects. Objective: In this context, the aim of the present study is to evaluate Madagascar cockroach (Gromphadorhina portentosa) flour supplementation effects on a malnourished mice model, considering its effects on metabolism, adiposity, and inflammatory liver profiles. Method: Male Swiss mice are divided into five groups and fed with experimental diets for eight weeks, including a standard diet (ST) ad libitum, AIN93 ad libitum (AIN), insect flour-enriched AIN93 (AIN+IM), AIN-40% feed restriction (AIN-FR), and insect flour-enriched AIN-40% of feed restriction (AIN-FR+IM). The metabolic profiles, adipose tissue, biochemical parameters, and liver IL-6 and IL-10 expression are evaluated. Results: The main findings show a body weight and metabolism improvement followed by an increased recovery of the adipocyte area in the AIN-FR+IM group when compared to the AIN-FR malnourished group. Reduced hepatic IL-6 and increased IL-10 expression are also detected in the AIN-FR+IM group. Conclusion: The results show that insect flour supplementation enhances both body weight and adiposity gain/recovery. The results also show hepatic improvement of inflammatory markers.


Sign in / Sign up

Export Citation Format

Share Document