Tonic Activity and Gravitational Control of the Postural Muscle

2021 ◽  
Vol 47 (7) ◽  
pp. 744-756
Author(s):  
B. S. Shenkman ◽  
T. M. Mirzoev ◽  
I. B. Kozlovskaya
2020 ◽  
Vol 54 (6) ◽  
pp. 58-72
Author(s):  
B.S. Shenkman ◽  
◽  
T.M. Mirzoev ◽  
I.B. Kozlovskaya ◽  
◽  
...  

The review is an attempt to describe and give a meaning to the accumulated data about the mechanisms controlling the structure and functionality of the postural muscle the almost continuous work of which makes it possible for the humans and animals to exist actively on Earth's surface. A great bulk of these data was obtained, described and systematized by professor I.B. Kozlovskaya and her pupils. A body of the most interesting facts and regularities was documented in other laboratories and research centers, quite often under the influence of ideas suggested by I.B. Kozlovskaya. The concept of the tonic system, that is, an integral physiological apparatus comprising not only slow and fast muscular fibers and small controlling motoneurons but also a complex of the brain (up to and including the striatum and motor cortex) and sensory mechanisms, constitutes the most important parts of her theoretical legacy. The fundamental conclusion of this review is that the gravity-dependent tonic contracting activity of the postural muscle controlled by the nervous system and afferent mechanisms is key to maintaining its structure, signal pathways and mechanic properties crucial for its constant anti-gravity activity.


2020 ◽  
pp. 77-82
Author(s):  
Anna Dedurina

In recent years, manual therapy has been increasingly used. This was facilitated by the scientific justification of the method, wellestablished training of specialists, good results of manual diagnostics and therapy of patients. Manual medicine is a system of diagnostic and therapeutic manual techniques aimed at identifying and treating disorders of the musculoskeletal system, manifested in the form of functional joint blockages, hypermobility and regional postural muscle imbalance. In addition to nosological diagnosis, manual examination data are of great importance for successful treatment. Manual diagnostics is a method aimed at detecting disorders in the spine, muscles and joints, as well as ligaments of the human body. The main task of diagnostics is to establish a differential diagnosis between diseases of the spine and joints and other nosological forms. Timely manual diagnostics with the use of manual therapy technologies helps to increase the effectiveness of complex treatment and helps to avoid complications and disability at an early age.


1992 ◽  
Vol 73 (1) ◽  
pp. 248-259 ◽  
Author(s):  
E. J. Kobylarz ◽  
J. A. Daubenspeck

We used an esophageal electrode to measure the amplitude and neural inspiratory and expiratory (N TE) timing responses of crural diaphragmatic electrical activity in response to flow-resistive (R) and elastic (E) loads at or below the threshold for conscious detection, applied pseudorandomly to the oral airway of eight normal subjects. We observed a rapid first-breath neural reflex that modified respiratory timing such that N TE lengthened significantly in response to R loads in six of eight subjects and shortened in response to E loading in six of seven subjects. The prolongation of N TE with R loading resulted primarily from lengthening the portion of N TE during which phasic activity in the diaphragm is absent (TE NDIA), whereas E loading shortened N TE mainly by reducing TE NDIA. Most subjects responded to both types of loading by decreasing mean tonic diaphragmatic activity, the average level of muscle activity that exists when no phasic changes are occurring, as well as its variability. The observed timing responses are consistent in direction with optimally adaptive pattern regulation, whereas the modulation of tonic activity may be useful in neural regulation of end-expiratory lung volume.


2011 ◽  
Vol 105 (5) ◽  
pp. 2375-2388 ◽  
Author(s):  
Julia A. Leonard ◽  
Valeriya Gritsenko ◽  
Ryan Ouckama ◽  
Paul J. Stapley

The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.


1992 ◽  
Vol 68 (5) ◽  
pp. 1516-1534 ◽  
Author(s):  
M. Kato ◽  
M. Kimura

1. The effects of a reversible blockade of basal ganglia were examined in two monkeys trained to perform a visually guided, step-tracking arm movement around the elbow joint. To block glutamatergic excitation, kynurenate (a glutamate antagonist) was locally injected into the putamen and the external segment (GPe) and the internal segment (GPi) of the globus pallidus contralateral to the arm tested. Muscimol [a gamma-aminobutyric acid (GABA) agonist] was also used to suppress neuronal activity in these structures. The drugs were injected in the arm area of the putamen, which was identified by microstimulation or by recording neural activity. For the GPe and GPi, injections were made into the area medioventral to the arm area of the putamen. 2. The blockade of the putamen caused abnormal braking of the arm movements. The first step of the movement became hypometric, and multiple steps were necessary to reach the target. The electromyographic (EMG) analysis revealed an increase of burst activity in the antagonist muscles and a decrease of that in the agonist muscles at the fast movements. The tonic activity increased in the extensor muscles during a holding period. 3. The blockade of the GPi caused dysmetric movements. Amplitude and peak velocity of the first step of movement largely fluctuated among trials. It became difficult for the animal to brake and adjust its arm onto the target. 4. The blockade of the GPe caused a flexion posture at the elbow joint of the contralateral arm. The tonic activity of the flexor muscles increased. Cocontraction of the agonist and antagonist muscles was also observed. 5. These results suggest that the putaminopallidal system of the basal ganglia contributes to both of two motor functions: 1) static control to maintain the posture with tonic muscle activity, and 2) dynamic control to enable fast movements.


PEDIATRICS ◽  
1985 ◽  
Vol 76 (4) ◽  
pp. 612-613
Author(s):  
ROBERT C. WOODY

The increasing availability of videorecording cameras and cassette recorders now permits the visual documentation of medical events in children at home by parents. On two occasions recently, we asked families to videorecord their children's presumed seizure activity at home. In the first case, a 10-month-old white boy had frequent "spells" which by history appeared to be complex partial seizures. Routine awake and asleep EEG tracings were normal, and the family resisted hospital admission for financial reasons. Anticonvulsant medications were prescribed, and the family suggested that they borrow their parent's videocassette recorder to document their son's spells at home. Their videorecordings produced a high quality, permanent record of definite complex partial symptom activity clearly revealing eye deviation, nystagmus, and associated head and arm tonic activity.


2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


Sign in / Sign up

Export Citation Format

Share Document