Species-specific, seasonal, inter-annual, and historically-accumulated changes in foliar terpene emission rates in Phillyrea latifolia and Quercus ilex submitted to rain exclusion in the Prades Mountains (Catalonia)

2011 ◽  
Vol 58 (1) ◽  
pp. 126-132 ◽  
Author(s):  
J. Llusià ◽  
J. Peñuelas ◽  
G. A. Alessio ◽  
R. Ogaya
1998 ◽  
Vol 76 (8) ◽  
pp. 1366-1373 ◽  
Author(s):  
J Llusià ◽  
J Peñuelas

Terpene concentration and emission were studied in potted plants of some of the most common Mediterranean woody species (Pinus halepensis L., Pistacia lentiscus L., Cistus albidus L., Cistus monspeliensis L., Quercus ilex L., Quercus coccifera L., Phillyrea latifolia L., Phillyrea angustifolia L., and Arbutus unedo L.) under irrigation and under severe drought conditions that dropped relative water content to a range between 40% in Q. ilex and 85% in Phillyrea latifolia after withholding watering for one dry summer week. Terpene concentrations were detected in Pinus halepensis, Pistacia lentiscus, C. albidus, and C. monspeliensis, and they increased after withholding watering except in C. albidus. Terpene emission was detected in all species except Phillyrea angustifolia and A. unedo. Pinus halepensis showed the highest diurnal terpene emission rates of 86 µg·g-1 dry wt.·h-1 followed by C. albidus, Pistacia lentiscus, Q. ilex, Q. coccifera, Phillyrea latifolia, and C. monspeliensis (4 µg·g-1 dry wt.·h-1). Emitted terpenes represented from 0.33% of C fixed in C. monspeliensis to 10% in C. albidus. All species severely decreased their terpene emission rates under severe drought conditions. Emission by terpene-storing species (e.g., Pinus halepensis) was more related to temperature than in nonstoring species (e.g., Q. ilex), which showed emission relationships with photosynthetic rates. The monoterpenes alpha-pinene, beta-pinene, beta-phellandrene, and limonene and the sesquiterpene caryophyllene were the most abundant terpenes stored and emitted by these Mediterranean plant species.Key words: drought, Mediterranean conditions, terpene concentration, terpene emission, woody plants.


2008 ◽  
Vol 5 (4) ◽  
pp. 1085-1100 ◽  
Author(s):  
S. Rottenberger ◽  
B. Kleiss ◽  
U. Kuhn ◽  
A. Wolf ◽  
M. T. F. Piedade ◽  
...  

Abstract. The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25–1700 nmol m−2 min−1 for ethanol and 5–500 nmol m−2 min−1 for acetaldehyde). Acetic acid emissions reached 12 nmol m−2 min−1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere.


2014 ◽  
Vol 41 (4) ◽  
pp. 391 ◽  
Author(s):  
Lina Fusaro ◽  
Simone Mereu ◽  
Cecilia Brunetti ◽  
Martina Di Ferdinando ◽  
Francesco Ferrini ◽  
...  

The responses to mild root zone salinity stress were investigated in two co-occurring Mediterranean woody evergreens, Quercus ilex L. and Arbutus unedo L., which differ in morpho-anatomical traits and strategies to cope with water deficit. The aim was to explore their strategies to allocate potentially toxic ions at organism level, and the consequential physiological and biochemical adjustments. Water and ionic relations, gas exchange and PSII performance, the concentration of photosynthetic pigments, and the activity of antioxidant defences, were measured. Q. ilex displayed a greater capacity to exclude Na+ and Cl– from the leaf than A. unedo, in part as a consequence of greater reductions in transpiration rates. Salt-induced reductions in CO2 assimilation resulted in Q. ilex suffering from excess of light to a greater extent than A. unedo. Consistently, in Q. ilex effective mechanisms of nonphotochemical quenching, also sustained by the lutein epoxide-lutein cycle, operated in response to salinity stress. Q. ilex also displayed a superior capacity to detoxify reactive oxygen species (ROS) than A. unedo. Our data suggest that the ability to exclude salt from actively growing shoot organs depends on the metabolic cost of sustaining leaf construction, i.e. species-specific leaf life-span, and the relative strategies to cope with salt-induced water stress. We discuss how contrasting abilities to restrict the entry and transport of salt in sensitive organs relates with species-specific salt tolerance.


2006 ◽  
Vol 29 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Carolina Puerta-Piñero ◽  
José María Gómez ◽  
Regino Zamora

2020 ◽  
Author(s):  
Katherine E. Eisen ◽  
Monica A. Geber ◽  
Robert A. Raguso

AbstractA current frontier of character displacement research is to determine if displacement occurs via multiple phenotypic pathways and varies across communities with different species compositions. Here, we conducted the first test for context-dependent character displacement in multimodal floral signals by analyzing variation in floral scent in a system that exhibits character displacement in flower size, and that has multiple types of sympatric communities. In a greenhouse common garden experiment, we measured quantitative variation in volatile emission rates of the progeny of two species of Clarkia from replicated communities that contain one, two, or four Clarkia species. The first two axes of a constrained correspondence analysis, which explained 24 percent of the total variation in floral scent, separated the species and community types, respectively. Of the 23 compounds that were significantly correlated with these axes, nine showed patterns consistent with character displacement. Two compounds produced primarily by C. unguiculata and two compounds produced primarily by C. cylindrica were emitted in higher amounts in sympatry. Character displacement in some volatiles varied across sympatric communities and occurred in parallel with displacement in flower size, demonstrating that this evolutionary process can be context-dependent and may occur through multiple pathways.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2918 ◽  
Author(s):  
Paramjeet Kaur Mithoo-Singh ◽  
Fiona S.-L. Keng ◽  
Siew-Moi Phang ◽  
Emma C. Leedham Elvidge ◽  
William T. Sturges ◽  
...  

Five tropical seaweeds,Kappaphycus alvarezii(Doty) Doty ex P.C. Silva,Padina australisHauck,Sargassum binderiSonder ex J. Agardh (syn.S. aquifolium(Turner) C. Agardh),Sargassum siliquosumJ. Agardh andTurbinaria conoides(J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro­momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh­ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro­mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception ofK. alvareziiandS. binderifor CH2I2and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially inPadina australisandSargassumspp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, wasP. australis. The commercially farmed seaweedK. alvareziiwas very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis (Fv∕Fm) and halocarbon emission rates, was significant only for CH2BrCl emission byP. australis(r = 0.47;p ≤ 0.04), implying that photosynthesis may not be closely linked to halocarbon emissions by the seaweeds studied. Bromine was the largest contributor to the total mass of halogen emitted for all the seaweeds at all pH. The highest total amount of bromine emitted byK. alvarezii(an average of 98% of total mass of halogens) and the increase in the total amount of chlorine with decreasing seawater pH fuels concern for the expanding seaweed farming activities in the ASEAN region.


Sign in / Sign up

Export Citation Format

Share Document