Plasma Cleaning of KU-1 Optical Quartz from Aluminum Films

Author(s):  
A. E. Gorodetsky ◽  
A. V. Markin ◽  
V. L. Bukhovets ◽  
V. I. Zolotarevsky ◽  
R. Kh. Zalavutdinov ◽  
...  
Author(s):  
Ray Wu ◽  
G. Ruben ◽  
B. Siegel ◽  
P. Spielman ◽  
E. Jay

A method for determining long nucleotide sequences of double-stranded DNA is being developed. It involves (a) the synchronous digestion of the DNA from the 3' ends with EL coli exonuclease III (Exo III) followed by (b) resynthesis with labeled nucleotides and DNA polymerase. A crucial factor in the success of this method is the degree to which the enzyme digestion proceeds synchronously under proper conditions of incubation (step a). Dark field EM is used to obtain accurate measurements on the lengths and distribution of the DNA molecules before and after digestion with Exo III, while gel electrophoresis is used in parallel to obtain a mean length for these molecules. It is the measurements on a large enough sample of individual molecules by EM that provides the information on how synchronously the digestion proceeds. For length measurements, the DNA molecules were picked up on 20-30 Å thick carbon-aluminum films, using the aqueous Kleinschmidt technique and stained with 7.5 x 10-5M uranyl acetate in 90% ethanol for 3 minutes.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. B. Knorr ◽  
K. P. Rodbell ◽  
D. P. Tracy

ABSTRACTPure aluminum films are deposited under a variety of conditions to vary the crystallographic texture. After patterning and annealing at 400°C for 1 hour, electromigration tests are performed at several temperatures. Failure data are compared on the basis of t50 and standard deviation. Microstructure is quantified by transmission electron microscopy for grain size and grain size distribution and by X-ray diffraction for texture. A strong (111) texture significantly improves the electromigration lifetime and decreases the standard deviation in time to failure. This improvement correlates with both the fraction and sharpness of the (111) texture component.


1984 ◽  
Vol 35 ◽  
Author(s):  
S. Williamson ◽  
G. Mourou ◽  
J.C.M. Li

ABSTRACTThe technique of picosecond electron diffraction is used to time resolve the laser-induced melting of thin aluminum films. It is observed that under rapid heating conditions, the long range order of the lattice subsists for lattice temperatures well above the equilibrium point, indicative of superheating. This superheating can be verified by directly measuring the lattice temperature. The collapse time of the long range order is measured and found to vary from 20 ps to several nanoseconds according to the degree of superheating. Two interpretations of the delayed melting are offered, based on the conventional nucleation and point defect theories. While the nucleation theory provides an initial nucleus size and concentration for melting to occur, the point defect theory offers a possible explanation for how the nuclei are originally formed.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daniil Marinov ◽  
Jean-François de Marneffe ◽  
Quentin Smets ◽  
Goutham Arutchelvan ◽  
Kristof M. Bal ◽  
...  

AbstractThe cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.


2021 ◽  
Vol 168 ◽  
pp. 112654
Author(s):  
Ulf Stephan ◽  
Olaff Steinke ◽  
Andrey Ushakov ◽  
Ad Verlaan ◽  
Maarten de Bock ◽  
...  

Author(s):  
Mazinov Alim Seit-Ametovich ◽  
Tyutyunik Andrey Sergeevich ◽  
Gurchenko Vladimir Sergeevich ◽  
Fitaev Ibraim Shevchetovich ◽  
Vasilchenko Vladislav Maksimovich

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Aviv Glezer Moshe ◽  
Eli Farber ◽  
Guy Deutscher

2017 ◽  
Vol 23 (S1) ◽  
pp. 1266-1267 ◽  
Author(s):  
Barbara Armbruster ◽  
Christopher Booth ◽  
Stuart Searle ◽  
Michael Cable ◽  
Ronald Vane

Sign in / Sign up

Export Citation Format

Share Document