Changes in the Snow Cover Extent in Eurasia from Satellite Data in Relation to Hemispheric and Regional Temperature Changes

2021 ◽  
Vol 501 (1) ◽  
pp. 963-968
Author(s):  
I. I. Mokhov ◽  
M. R. Parfenova
Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 728
Author(s):  
Xuejiao Wu ◽  
Yongping Shen ◽  
Wei Zhang ◽  
Yinping Long

With snow cover changing worldwide in several worrisome ways, it is imperative to determine both the variability in snow cover in greater detail and its relationship with ongoing climate change. Here, we used the satellite-based snow cover extent (SCE) dataset of National Oceanic and Atmospheric Administration (NOAA) to detect SCE variability and its linkages to climate over the 1967–2018 periods across the Northern Hemisphere (NH). Interannually, the time series of SCE across the NH reveal a substantial decline in both spring and summer (−0.54 and −0.71 million km2/decade, respectively), and this decreasing trend corresponded with rising spring and summer temperatures over high-latitude NH regions. Among the four seasons, the temperature rise over the NH was the highest in winter (0.39 °C/decade, p < 0.01). More precipitation in winter was closely related to an increase of winter SCE in mid-latitude areas of NH. Summer precipitation over the NH increased at a significant rate (1.1 mm/decade, p < 0.01), which likely contribute to the accelerated reduction of summer’s SCE across the NH. However, seasonal sensitivity of SCE to temperature changes differed between the Eurasian and North American continents. Thus, this study provides a better understanding of seasonal SCE variability and climatic changes that occurred at regional and hemispheric spatial scales in the past 52 years.


2021 ◽  
Author(s):  
Mickaël Lalande ◽  
Martin Ménégoz ◽  
Gerhard Krinner

&lt;p&gt;The High Mountains of Asia (HMA) region and the Tibetan Plateau (TP), with an average altitude of 4000 m, are hosting the third largest reservoir of glaciers and snow after the two polar ice caps, and are at the origin of strong orographic precipitation. Climate studies over HMA are related to serious challenges concerning the exposure of human infrastructures to natural hazards and the water resources for agriculture, drinking water, and hydroelectricity to whom several hundred million inhabitants of the Indian subcontinent are depending. However, climate variables such as temperature, precipitation, and snow cover are poorly described by global climate models because their coarse resolution is not adapted to the rugged topography of this region. Since the first CMIP exercises, a cold model bias has been identified in this region, however, its attribution is not obvious and may be different from one model to another. Our study focuses on a multi-model comparison of the CMIP6 simulations used to investigate the climate variability in this area to answer the next questions: (1) are the biases in HMA reduced in the new generation of climate models? (2) Do the model biases impact the simulated climate trends? (3) What are the links between the model biases in temperature, precipitation, and snow cover extent? (4) Which climate trajectories can be projected in this area until 2100? An analysis of 27 models over 1979-2014 still show a cold bias in near-surface air temperature over the HMA and TP reaching an annual value of -2.0 &amp;#176;C (&amp;#177; 3.2 &amp;#176;C), associated with an over-extended relative snow cover extent of 53 % (&amp;#177; 62 %), and a relative excess of precipitation of 139 % (&amp;#177; 38 %), knowing that the precipitation biases are uncertain because of the undercatch of solid precipitation in observations. Model biases and trends do not show any clear links, suggesting that biased models should not be excluded in trend and projections analysis, although non-linear effects related to lagged snow cover feedbacks could be expected. On average over 2081-2100 with respect to 1995-2014, for the scenarios SSP126, SSP245, SSP370, and SSP585, the 9 available models shows respectively an increase in annual temperature of 1.9 &amp;#176;C (&amp;#177; 0.5 &amp;#176;C), 3.4 &amp;#176;C (&amp;#177; 0.7 &amp;#176;C), 5.2 &amp;#176;C (&amp;#177; 1.2 &amp;#176;C), and 6.6 &amp;#176;C (&amp;#177; 1.5 &amp;#176;C); a relative decrease in the snow cover extent of 10 % (&amp;#177; 4.1 %), 19 % (&amp;#177; 5 %), 29 % (&amp;#177; 8 %), and 35 % (&amp;#177; 9 %); and an increase in total precipitation of 9 % (&amp;#177; 5 %), 13 % (&amp;#177; 7 %), 19 % (&amp;#177; 11 %), and 27 % (&amp;#177; 13 %). Further analyses will be considered to investigate potential links between the biases at the surface and those at higher tropospheric levels as well as with the topography. The models based on high resolution do not perform better than the coarse-gridded ones, suggesting that the race to high resolution should be considered as a second priority after the developments of more realistic physical parameterizations.&lt;/p&gt;


2001 ◽  
Vol 47 (156) ◽  
pp. 147-151 ◽  
Author(s):  
He Yuanqing ◽  
Wilfred H. Theakstone ◽  
Yao Tandong ◽  
Shi Yafeng

AbstractStratigraphic variations of oxygen isotopes in the snow which accumulates during the winter at the Norwegian glacier Austre Okstindbreen are not entirely eliminated after 1–2 months of ablation in the following summer. The relationship between regional temperature changes and δ18O values in the snowpack is affected by many natural factors, but 1989/90 winter air temperatures were reflected in the snow which remained on Austre Okstindbreen at 1350 m a.s.l. in July 1990. There were many variations of δ18O values in the 4.1m of snow above the 1989 summer surface, but variations in the underlying firn were relatively small. Meltwater percolation modifies the initial variations of δ18O values in the snowpack. At a site below the mean equilibrium-line altitude on Austre Okstindbreen, increased isotopic homogenization within a 10 day period in July accompanied an increase of the mean δ18O value. Although the isotopic record at a temperate glacier is likely to be influenced by more factors than is that at polar glaciers, it can provide an estimate of the approximate trend of local temperature variations.


2013 ◽  
Vol 17 (10) ◽  
pp. 3921-3936 ◽  
Author(s):  
M. Ménégoz ◽  
H. Gallée ◽  
H. W. Jacobi

Abstract. We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period.


2021 ◽  
Vol 9 ◽  
Author(s):  
Roberto O. Chávez ◽  
Verónica F. Briceño ◽  
José A. Lastra ◽  
Daniel Harris-Pascal ◽  
Sergio A. Estay

Mountain regions have experienced above-average warming in the 20th century and this trend is likely to continue. These accelerated temperature changes in alpine areas are causing reduced snowfall and changes in the timing of snowfall and melt. Snow is a critical component of alpine areas - it drives hibernation of animals, determines the length of the growing season for plants and the soil microbial composition. Thus, changes in snow patterns in mountain areas can have serious ecological consequences. Here we use 35 years of Landsat satellite images to study snow changes in the Mocho-Choshuenco Volcano in the Southern Andes of Chile. Landsat images have 30 m pixel resolution and a revisit period of 16 days. We calculated the total snow area in cloud-free Landsat scenes and the snow frequency per pixel, here called “snow persistence” for different periods and seasons. Permanent snow cover in summer was stable over a period of 30 years and decreased below 20 km2 from 2014 onward at middle elevations (1,530–2,000 m a.s.l.). This is confirmed by negative changes in snow persistence detected at the pixel level, concentrated in this altitudinal belt in summer and also in autumn. In winter and spring, negative changes in snow persistence are concentrated at lower elevations (1,200–1,530 m a.s.l.). Considering the snow persistence of the 1984–1990 period as a reference, the last period (2015–2019) is experiencing a −5.75 km2 reduction of permanent snow area (snow persistence &gt; 95%) in summer, −8.75 km2 in autumn, −42.40 km2 in winter, and −18.23 km2 in spring. While permanent snow at the high elevational belt (&gt;2,000 m a.s.l.) has not changed through the years, snow that used to be permanent in the middle elevational belt has become seasonal. In this study, we use a probabilistic snow persistence approach for identifying areas of snow reduction and potential changes in alpine vegetation. This approach permits a more efficient use of remote sensing data, increasing by three times the amount of usable scenes by including images with spatial gaps. Furthermore, we explore some ecological questions regarding alpine ecosystems that this method may help address in a global warming scenario.


2016 ◽  
Vol 47 (12) ◽  
pp. 3955-3977 ◽  
Author(s):  
Pierfrancesco Da Ronco ◽  
Carlo De Michele ◽  
Myriam Montesarchio ◽  
Paola Mercogliano

Sign in / Sign up

Export Citation Format

Share Document