Erratum: “The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus”

2016 ◽  
Vol 52 (5) ◽  
pp. 425-425
Author(s):  
A. O. Shpakov
2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Mráziková ◽  
Barbora Neprašová ◽  
Anna Mengr ◽  
Andrea Popelová ◽  
Veronika Strnadová ◽  
...  

Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1059
Author(s):  
Bodo C. Melnik

Epidemiological studies associate milk consumption with an increased risk of Parkinson’s disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.


Sign in / Sign up

Export Citation Format

Share Document