Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam

2014 ◽  
Vol 50 (5) ◽  
pp. 650-658 ◽  
Author(s):  
Zaiqiang Zhang ◽  
Jie Cai ◽  
Le Ji ◽  
Xiaotong Wang ◽  
Yan Li ◽  
...  
2013 ◽  
Vol 787 ◽  
pp. 19-23
Author(s):  
Zai Qiang Zhang ◽  
Sheng Zhi Yang ◽  
Yan Li ◽  
Xiao Tong Wang ◽  
Xiu Li Hou ◽  
...  

AISI 304L austenite stainless steel was irradiated by a high-current pulsed electron beam (HCPEB) source in different process. The microstructures were investigated in detail by electron microscopy. The changes of hardness and corrosion resistance induced by irradiation were also tested. The relationship between corrosion resistance and the microstructures has been explored. The experimental results demonstrate the potential of proper HCPEB processing for improving the hardness and corrosion resistance of metallic materials.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1260 ◽  
Author(s):  
Khan ◽  
Ya ◽  
Pao

Erosion-corrosion is an unavoidable material degradation process in flow pipelines transporting abrasive particles with carrier fluids. In this study, the multiphase flow loop apparatus is employed to assess the erosion-corrosion behavior and mechanism relative to AISI 1018 carbon steel (CS) and AISI 304L stainless steel (SS) 90° long radius elbows with the inner diameter of 50.8 mm. Fine silica sand of 50 µm average size was used as a dispersed phase and erosion-corrosion tests were conducted for slug flow conditions. The erosion-corrosion analysis of 90° elbows was determined from its surface morphologies before and after the experiment using confocal and scanning electron microscopy (SEM). The direct mass loss was measured to quantify the erosion-corrosion rate of the elbow configurations. Additionally, multilayer paint modeling experiments were performed to relate qualitative inferences on erosion distribution and location with the erosion-corrosion mechanism. It was observed that the erosion or corrosion pitting mechanism prevailed on the 1018 CS elbow surface, and the 304L SS displayed excellent erosion-corrosion resistance properties. Moreover, the erosion-corrosion rate was found to be 4.12 times more in the 1018 CS compared to the 304L SS with the maximum particle impaction identified at the exit of the horizontal-horizontal (H-H) 90° elbow for slug flow.


Author(s):  
L. Carvalho ◽  
W. Pacquentin ◽  
M. Tabarant ◽  
J. Lambert ◽  
A. Semerok ◽  
...  

Laser cleaning study was performed on prepared samples using a nanosecond pulsed ytterbium fiber laser. To prepare samples, AISI 304L stainless steel samples were oxidized and implemented with non-radioactive contaminants in a controlled manner. In order to validate the cleaning process for metallic equipment polluted in nuclear installations, two types of contamination with europium (Eu) and with cobalt (Co) were studied. Eu was used as a simulator-product resulting from uranium fission, while Co — as an activation-product of nickel, which is a composing element of a primary coolant system of a reactor. The oxide layers have suffered laser scanning which was followed by the furnace treatment to obtain thicknesses in the range of 100 nm to 1 μm depending on the oxidation parameters [1] with a mean weight percentage of 1% of Eu and 1 % of Co in the volume of the oxide layer. Glow Discharge Optical Emission (GD-OES) and Mass Spectrometry (GD-MS) analyses have been performed to assess the efficiency of the cleaning treatment and to follow the distribution of residual contamination with a detection limit of 0.1mg/kg of Eu and Co. Decontamination rates up to 95.5 % were obtained. One of the identified reasons for this limitation is that the radionuclides are trapped in surface defects like micro cracks [2, 3]. Therefore, cleaning treatments have been applied on surface defects with controlled geometry and a micrometric aperture obtained by laser engraving and juxtaposition of polished sheets of AISI 304L stainless steel. The goal of this study is surface decontamination without either welding or inducing penetration of contamination into the cracks. GD-MS analysis and Scanning Electron Microscopy (SEM) were performed to analyze the efficiency of the treatment and the diffusion of contaminants in this complex geometry.


Sign in / Sign up

Export Citation Format

Share Document