Development and study of a material for mechanized welding of basic structures from nonmagnetic high-strength nitrided steel

2011 ◽  
Vol 2 (6) ◽  
pp. 612-617
Author(s):  
G. Yu. Kalinin ◽  
R. V. Bishokov ◽  
P. V. Mel’nikov ◽  
L. A. Berezovskaya ◽  
V. A. Mogil’nikov ◽  
...  
Author(s):  
Bill Bruce ◽  
Jose Ramirez ◽  
Matt Johnson ◽  
Robin Gordon

This paper presents the results of a project jointly funded by PRCI and EWI to evaluate the welding of X100 pipe grades using commercially available welding consumables. The welding trials included manual, semi-automatic and mechanized welding procedures. It was found that the combination of Pulsed GMAW and ER100S-1 (using a mixed shielding gas) produced both excellent Charpy impact and CTOD performance, but could result in undermatched girth welds if the pipe significantly exceeds minimum strength requirements. Although ER120 S-1 provides an additional margin of safety in strength, which should accommodate variations in X-100 pipe properties, the toughness results were marginal at −10°C. The risk of weld metal hydrogen cracking in X100 girth welds was also investigated.


Author(s):  
Christopher J. Penniston ◽  
Robert M. Huntley

The benefits of mechanized welding for pipeline construction are well known, as reflected by the high industrial acceptance and usage of its variations. However, the engineering and qualification costs associated with the preparation of alternative acceptance criteria for typical pulsed and short-circuit MIG (GMAW-P and GMAW-S) girth welds can make the implementation of mechanization too costly and/or time consuming for small projects. A multi-wire welding technology, employing a high-deposition consumable that possesses excellent positional capability, along with paired digitally controlled asynchronous inverter power sources, is presented. Trials were performed on CSA Z245.1 914 mm (NPS 36) OD × 20.4 mm WT Grade 483 heavy wall high strength line pipe. One variant used an 8-head internal welding machine for the root pass, and a conventional single torch short-circuit GMAW hot pass in a compound narrow-groove configuration. A second variant utilized an externally applied controlled short-circuit GMAW-S process for the root pass in a factory-style pipe bevel configuration. Both variants employed fill and cap passes using tandem pulsed gas-shielded flux-cored arc welding (T-FCAW-G/P), using rutile consumables, with the “bug and band” MOW II mechanized welding system. Basic mechanical testing was performed on the first weld variant, along with single-edge notched bend (SENB) crack tip opening displacement (CTOD) tests, and results are presented. A productivity comparison is then shown, using weld data from the second weld variant against alternative processes, showing considerably lower fill and cap pass arc time using the T-FCAW-G/P process. Given the process’s low tendency for the formation of planar discontinuities, the process is appealing for the use of “workmanship” acceptance criteria. With further procedure development and fine-tuning of the process, tandem flux-cored arc welding may prove viable, particularly for “short” pipelines, where the costs of comprehensive engineering critical assessment/fitness-for-purpose weld procedure qualification and associated engineering work aren’t justified; as a higher productivity alternative to single wire flux-cored arc welding for mechanized tie-in welding; as a much higher productivity alternative to SMAW for tie-ins; or with a narrow groove design, mainline applications for longer-distance projects.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
L. S. Lin ◽  
C. C. Law

Inconel 718, a precipitation hardenable nickel-base alloy, is a versatile high strength, weldable wrought alloy that is used in the gas turbine industry for components operated at temperatures up to about 1300°F. The nominal chemical composition is 0.6A1-0.9Ti-19.OCr-18.0Fe-3Mo-5.2(Cb + Ta)- 0.1C with the balance Ni (in weight percentage). The physical metallurgy of IN 718 has been the subject of a number of investigations and it is now established that hardening is due, primarily, to the formation of metastable, disc-shaped γ" an ordered body-centered tetragonal structure (DO2 2 type superlattice).


Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.


Author(s):  
W. Braue ◽  
R.W. Carpenter ◽  
D.J. Smith

Whisker and fiber reinforcement has been established as an effective toughening concept for monolithic structural ceramics to overcome limited fracture toughness and brittleness. SiC whiskers in particular combine both high strength and elastic moduli with good thermal stability and are compatible with most oxide and nonoxide matrices. As the major toughening mechanisms - crack branching, deflection and bridging - in SiC whiskenreinforced Al2O3 and Si3N41 are critically dependent on interface properties, a detailed TEM investigation was conducted on whisker/matrix interfaces in these all-ceramic- composites.In this study we present HREM images obtained at 400 kV from β-SiC/α-Al2O3 and β-SiC/β-Si3N4 interfaces, as well as preliminary analytical data. The Al2O3- base composite was hotpressed at 1830 °C/60 MPa in vacuum and the Si3N4-base material at 1725 °C/30 MPa in argon atmosphere, respectively, adding a total of 6 vt.% (Y2O3 + Al2O3) to the latter to promote densification.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document